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Introduction, Xpress overview

Topics

• Introduction to Xpress
• Modeling with Mosel:

– Linear and Mixed Integer Programming
(LP and MIP)

– Accessing data sources
– Programming language features

• Embedding models in applications

Aims

• At the end of the course you will

– be familiar with optimization methods
and the terminology used to describe
them

– be confident about formulating optimiza-
tion models and understanding the solu-
tion

– know how use Xpress to model and solve
problems

– be able to embed a model in a application

Other materials

• Not a replacement for the reference manuals!
• Focuses on areas that are of practical impor-

tance
• Does not try to be exhaustive
• Pointers to reference material at the end of ev-

ery chapter

1.1 Overview of Xpress
Notes

• Optimization algorithms

– enables you to solve different classes of
problems

– built for speed, robustness and scalability

• Modeling interfaces

– enables you to provide your problem in
the most suitable way for your application

– built for ease of use and interfacing
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Optimization algorithms

LP MIQPMIPQCQP

Primal & Dual
Simplex

Barrier

Branch & Cut
MIP

SLP

Optimizer

NLP MINLPMIQCQP

Modeling interfaces

• Mosel

– formulate model and develop optimiza-
tion methods using Mosel language / en-
vironment

• BCL

– build up model in your application code
using object-oriented model builder li-
brary

• Optimizer

– read in matrix files
– input entire matrix from program arrays

Mosel

• A modeling and solving environment

– integration of modeling and solving
– programming facilities
– open, modular architecture

• Interfaces to external data sources (e.g. ODBC,
host application) provided

• Language is concise, user friendly, high level
• Best choice for rapid development and deploy-

ment

Mosel: Components and interfaces

• Mosel language: to implement problems and
solution algorithms
⇒ model or Mosel program

• Mosel Model Compiler and Run-time Libraries:
to compile, execute and access models from a
programming language
⇒ C/C++, C#, Java, or VB program
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• Mosel Native Interface (NI): to provide new or
extend existing functionality of the Mosel lan-
guage
⇒ module

• Xpress-IVE: graphical user interface, represen-
tation of the problem matrix, solution sta-
tus/progress graphs, and result display

Mosel model extract

declarations
use: array(OILS,TIME) of mpvar
MaxRev: linctr
Inven: array(OILS,TIME) of linctr

end-declarations

MaxRev := sum(i in OILS, t in TIME) (FOODPRICE*use(i,t) -
SCOST*store(i,t) - COST(i,t)*buy(i,t))

forall(t in TIME) do
MaxVegRef(t) := sum(i in VOILS) use(i,t) <= MAXREFVEG
forall(i in OILS) do
Inven(i,t) := store(i,t) = store(i,t-1) + buy(i,t) - use(i,t)
ifuse(i,t) is_binary

end-do
end-do

Mosel Libraries

• Embed Mosel models directly in your applica-
tion

• Access the solution within your application
• Compiled models are platform independent
• Enjoy benefits of structured modeling lan-

guage and rapid deployment when building
applications

• Available for C, Java, C#, and VB

Xpress-IVE

• Visual Studio style visual development envi-
ronment for optimization & model building
with Mosel

• Mosel model editor & compiler
• Real time graphs show optimization perfor-

mance
• Browse solution values in entity tree

Xpress-BCL

• Model consists of BCL functions within appli-
cation source code (C, C++, Java, C# or VB)

• Develop with standard C/C++/Java/C#/VB tools
• Provide your own data interfacing
• Lower level, object oriented approach
• Enjoy benefits of structured modeling within

your application source code
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BCL extract

for (f = 0; f < NF; f++)
for (t = 0; t < NT; t++) {
open[f][t] = prob.newVar("open", XPRB_BV);
make[f][t] = prob.newVar("make", XPRB_PL, 0, 100);

}

MaxProfit = prob.newCtr("MaxProfit");
for (f = 0; f < NF; f++)
for (t = 0; t < NT; t++)
MaxProfit += -MCOST[f]*make[f][t];

for (f = 0; f < NF; f++)
for (t = 0; t < NT; t++)
MxMake[f][t] =
prob.newCtr("MxMake", make[f][t] <= MXMAKE[f]*open[f][t] );

Xpress-Optimizer

• Model is set of arrays within application source
code (C, Java, C#, or VB)

• May also input problems from a matrix file
• Develop with standard C/C#/Java/VB tools
• Provide your own data interfacing
• Very low level, no problem structure
• Most efficient but lose easy model develop-

ment and maintenance

Mosel and Optimizer Consoles

• Stand-alone command line executables with
text interfaces

• Useful for simple deployment using
batch/script files

• Available for all platforms supported by Xpress

Why choose Xpress?

• Active research and development
• Performance & reliability
• Problem classes & sizes
• Choice of modeling software
• Support

1.2 Why use modeling software?
Notes

& analysis
Interpretation

conception
Problem

Model

Computational

Computational
solution instance

Model solution

problem instance

Human Computer
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• Developing a working model is the difficult bit
• Important to have software that helps

– speed to market
– verify correctness
– maintenance & modification
– algorithmic considerations
– execution speed

Xpress modeling software

• The concepts we describe – how to formulate
and solve problems – apply to all modeling
software

• In this course we will use the Xpress-IVE devel-
opment environment with the Xpress-Mosel
language because it is

– easy to understand and learn
– easy to use

Xpress optimization software

• Whether you use Mosel, BCL, or interface to
the Optimizer directly, your models will all be
solved using the Xpress-Optimizer

• The optimization performance will be the
same no matter which modeling software you
use

1.3 Xpress-IVE demonstration
Notes

• Models: new, saving, opening, switching
start a new model

open an existing model

save current model

show list of available modules
• Bars: editor, entity, info, output (run)

switch between window layouts
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• Editor: colors, auto-complete, tool tips

copy selection

cut selection

paste selection

go to next / last line with same indentation

go to previous / next cursor position (line)

undo / redo last editor command

• Compile, run
compile current model

execute current model

open run options dialog

pause execution

interrupt execution

search for the N best solutions

start infeasibility repair

• Output bar: log, stats, matrix, graphs, tree
• Viewing solution values
• Problem and matrix export and import

generate BIM file

export the problem matrix

optimize an imported matrix

• Search, bookmark
search

delete bookmarks
• Help

help

model generation wizzard & example models

module generation wizzard

• Debugger
set/delete breakpoint at cursor

define conditional breakpoint

start/stop debugger

step over an expression

step into an expression

run up to the cursor

show debugger options dialog
• Profiler

start the profiler
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Reference material

• The manual Getting Started with Xpress intro-
duces first time or occasional users to modeling
with Mosel and BCL, or the direct Optimizer in-
terface

• The Evaluators Guide and Advanced Evalua-
tors Guide provide a quick walk-through of the
Getting Started examples and some more ad-
vanced features
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Modeling with Mosel

• Modeling basics
• Accessing data sources
• Advanced modeling topics
• Programming language features
• Mosel modules and packages

2.1 Modeling basics
Notes

Topics

• Definition of decision variables and constraints
• Solving with Xpress-Optimizer
• Solution output

2.1.1 A first model

Example: Chess problem

• A joinery makes two different sizes of box-
wood chess sets.

• The small set requires 3 hours of machining
on a lathe, and the large set requires 2 hours.
There are 4 lathes with skilled operators who
each work a 40 hour week.

• The small chess set requires 1 kg of boxwood,
and the large set requires 3 kg. Only 200 kg of
boxwood can be obtained per week.

• Each of the large chess sets yields a profit of
$20, and one of the small chess sets has a profit
of $5.

• How many sets of each kind should be made
each week so as to maximize profit?

Chess problem: Mathematical formulation

• xl – quantity of large chess sets made
xs – quantity of small chess sets made

max z = 5 · xs + 20 · xl

s.t. 3 · xs + 2 · xl ≤ 160(= 4 · 40) (lathe time)

xs + 3 · xl ≤ 200 (wood)

xs, xl ≥ 0
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Chess problem: Graphical solution

200 240

40

80

120

40 80 120 160 280 xs

xl

z=800
z=1200

z=1600

z=2000

z=400

optimal solution

time wood

Chess problem: Model Chess 1

model "Chess 1"
uses "mmxprs" ! Use Xpress-Optimizer for solving

declarations
xs: mpvar ! Number of small chess sets
xl: mpvar ! Number of large chess sets

end-declarations

3*xs + 2*xl <= 160 ! Constraint: limit on working hours
xs + 3*xl <= 200 ! Constraint: raw mat. availability

maximize(5*xs + 20*xl) ! Objective: maximize total profit

end-model

Starting and ending a Mosel model

model "Chess 1"
...

end-model

Preamble

• uses statement: Say we will use the Xpress-
Optimizer library, so that we can solve our
problem

• Options:

– noimplicit: force all objects to be de-
clared

– explterm: Use ’;’ to mark line ends

uses ’mmxprs’
options noimplicit
options explterm

Decision variables

declarations
x: mpvar
a, b, c: mpvar
make: array(1..10, 1..20) of mpvar
buy, sell: array(1..10) of mpvar

end-declarations

• mpvar means mathematical programming
variable or decision variable

• Decision variables are unknowns: they have no
value until the model is run, and the optimizer
finds values for the decision variables
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• In optimization problems, decision variables
are often just called variables

• In computer programs, a variable can be used
to refer to many different types of objects

• For instance, in Mosel models, a program vari-
able can be used to refer to a decision variable,
as well as integers, reals, etc.

Bounds on decision variables

• Variables can take values between 0 and infin-
ity by default

• Other bounds may be specified

x <= 10
y(1) = 25.5
y(2) is_free
z(2,3) >= -50
z(2,3) <= 50

Constraints

• Have type linctr – linear constraint

declarations
Wood: linctr
Inven: array(1..10) of linctr

end-declarations

• The ‘value’ of a constraint entity is a linear
expression of decision variables, a constraint
type, and a constant term

• Set using an assignment statement

Wood := xs + 3*xl <= 200

Constraints

Ctr(1) := 2*x(1) + 5*x(2) <= 60
Ctr(2) := x(1) - x(2) = 0
Ctr(3) := 4*x(1) - 3*x(2) >= 10

Inven(2) := stock(2) = stock(1) +
buy(2) - sell(2)

Objective function

• An objective function is just a constraint with
no constraint type

declarations
MinCost: linctr

end-declarations

MinCost := 10*x(1) + 20*x(2) + 30*x(3) + 40*x(4)

Optimization & matrix generation

• Generate the matrix and solve the problem:

minimize(MinCost)
maximize(5*xs + 20*xl)

• Load the matrix:

loadprob(MinCost)

• Matrix export:

exportprob(0, "explout", MinCost)
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Viewing the solution

• Can access and manipulate the solution values
within the model

writeln(’Solution: ’, getobjval)

writeln(’xs = ’, getsol(xs))
writeln(’xl = ’, getsol(xl))

write(’Wood: ’, getact(Wood), ’ ’)
writeln(getslack(Wood))

• Solution values of constraints
activity value + slack value = RHS

Project work [C-1]: Chess problem

• Execute the model chess1.mos.
• Add printing of the solution values.
• Is the solution realistic/desirable?
• Constrain the variables to take integer values

only.
• Add output of constraint activity and slack val-

ues.

• Executing model chess1.mos with IVE:

– double click on the model file to start IVE
or open the file from within IVE

– click on the run button:

• Model execution from the command line:

mosel -c "exe chess1.mos"

– or:

mosel
exe chess1.mos
quit

Solution analysis

• What happens if machines operate 35 instead
of 40 hours?

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400 z=800

z=2000

z=1600

z=1200

optimal solution

time wood

• Calculate spare capacity: getslack,
getactivity
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LP solution analysis

• What is the cost of an extra unit of wood/extra
working hour?

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400
z=1200

z=1600

z=2000

woodtime

optimal solution

z=800

• Reduced cost: getrcost

• What is the cost of producing an additional
unit of each product?

200 240

40

80

120

40 80 120 160 280

wood

xs

xl

z=400 z=800 z=1200 z=1600

z=2000

optimal solutions

time

• Dual values (’shadow prices’): getdual
• Increase price of xl to reach break even point

Solution analysis

• Limit the amount of xl.

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400 z=800
z=1200

z=1600

z=2000

xl=50

woodtime

optimal solution
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2.1.2 Data structures and loops

Extending the example: Model Chess 2
uses "mmxprs"
options explterm ! Use ’;’ to mark line ends

declarations
Allvars: set of mpvar; ! Set of variables
DescrV: array(Allvars) of string; ! Descriptions of variables
xs,xl: mpvar;

end-declarations

DescrV(xs):= "Small"; DescrV(xl):= "Large";

Profit:= 5*xs + 20*xl; ! Objective function
Time:= 3*xs + 2*xl <= 160; ! Constraints
Wood:= xs + 3*xl <= 200;
xs is_integer; xl is_integer;

maximize(Profit);
writeln("Solution: ", getobjval);
forall(x in Allvars) writeln(DescrV(x), ": ", getsol(x));

Data structures

• Set: unordered collection of objects of the
same type

– used as index sets
– special type range sets (= interval of inte-

gers)

• Array: multidimensional table of objects of the
same type

– used for data, decision variables, con-
straints

– may be dynamic or static

Arrays and loops: Model Chess 3
uses "mmxprs"

declarations
R = 1..2 ! Index range
DUR, WOOD, PROFIT: array(R) of real ! Coefficients
x: array(R) of mpvar ! Array of variables

end-declarations

DUR :: [3, 2] ! Initialize data arrays
WOOD :: [1, 3]
PROFIT :: [5, 20]

sum(i in R) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in R) WOOD(i)*x(i) <= 200
forall(i in R) x(i) is_integer
maximize(sum(i in R) PROFIT(i)*x(i))
writeln("Solution: ", getobjval)

Data declaration

declarations
NWEEKS = 20 ! Integer constant
DATA_DIR = ’c:/data’ ! String constant
NPROD: integer ! Integer variable
SCOST: real ! Real variable
DIR: string ! String variable
IF_DEBUG: boolean ! Boolean variable

PRODUCTS = {"P1", "P2", "P4"} ! Constant set of string
S: set of integer ! Variable set of integer
R: range ! Range of integers
COST: array(1..3,1..4) of real ! Array of real

end-declarations
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Data initialization

NPROD:= 50
SCOST:= 5.4
DIR:= ’c:/data’
IF_DEBUG:= true

S:= {10, 0, -5, 13}
R:= 1..NPROD
COST:: [11, 12, 13, 14,

21, 22, 23, 24,
31, 32, 33, 34]

Summations

• Sum up an array of variables in a constraint

Ctr1:= sum(p in 1..10) (RES(p)*buy(p) + sell(p)) <= 100

Ctr2:= sum(p in PRODUCTS) (buy(p) + sum(r in 1..5) make(p,r)) <= 100

Ctr3:= sum(p in 1..NP) (2*CAP(p)*buy(p)/10 +
SCAP(p)*sell(p)) <= MAXCAP

Loops

• Use a loop to assign an array of constraints

forall(t in 2..NT)
Inven(t):= bal(t) = bal(t-1) + buy(t) - sell(t)

• Use do/end-do to group several statements
into one loop

forall(t in 1..NT) do
MaxRef(t):= sum(i in PRODUCTS)
use(i,t) <= MAXREF(t)

Inven(t):= store(t) = store(t-1) + buy(t) - use(t)
end-do

• Can nest forall statements

forall(t in 1..NT) do
MaxRef(t):= sum(i in 1..NI) use(i,t) <= MAXREF(t)

forall(i in 1..NI)
Inven(i,t):= store(i,t) = store(i,t-1) + buy(i,t) - use(i,t)

end-do

Conditions

• May include conditions in sums or loops

forall(c in 1..10 | CAP(c)>=100.0)
MaxCap(c):=
sum(i in 1..10, j in 1..10 | i<>j)
TECH(i,j,c)*x(i,j,c) <= MAXTECH(c)

Mosel statements

• Can extend over several lines and use spaces
• However, a line break acts as an expression ter-

minator
• To continue an expression, it must be cut after

a symbol that implies continuation (e.g. + - , )
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2.1.3 Model building style
• You should aim to build a model with sections

in this order

– constant data: declare, initialize
– all non-constant objects: declare
– variable data: initialize / input / calculate
– decision variables: create, specify bounds
– constraints: declare, specify
– objective: declare, specify, optimize

• In both LP and MIP it is very important to dis-
tinguish between

– known values

∗ data, parameters, etc.

– and unknown values

∗ decision variables

• All constraints must be linear expressions of
the variables

• Suggestion: name objects as follows

– known values (data) using upper case
– unknown values (variables) using lower

case
– constraints using mixed case

so that it is easy to distinguish between them,
and see that constraints are indeed linear

• Variables are actions that your model will pre-
scribe

• Use verbs for the names of variables

– this emphasizes that variables represent
‘what to do’ decisions

• Indices are the objects that the actions are per-
formed on

• Use nouns for the names of indices

• Using named index sets/ranges

– improves the readability of a model
– makes it easier to apply the model to dif-

ferent sized data sets
– makes the model easier to maintain
– may speed up your model

• Try to include ‘Min’ or ‘Max’ in the name of
your objective function

• An objective function called ‘Obj’ is not very
helpful when taken out of context!
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• Comments are essential for a well written
model

• Always use a comment to explain what each
parameter, data table, variable, and constraint
is for when you declare it

• Add extra comments to explain any complex
calculation etc.

• Comments in Mosel:

declarations
PRODUCTS = 1..NP ! Set of products
TIMES = 1..NT ! Set of time periods
make: array(PRODUCTS, TIMES) of mpvar

! Amount of p produced in time t
sell: array(PRODUCTS, TIMES) of mpvar

! Amount of p sold in time t
end-declarations

(! And here is a multi-line
comment !) forall(t in TIMES)

2.2 Accessing data sources
Notes

Topics

• Text files
• ODBC
• Sparse data

Separation of problem logic and data

• Typically, the model logic stays constant once
developed, with the data changing each run

• Editing the model can create errors, expose in-
tellectual property, and is impractical for in-
dustrial size data

• It makes good sense to fix the model and ob-
tain data from their source

2.2.1 The initializations block

Data input from file: Chess 4
uses "mmxprs"

declarations
PRODS = 1..2 ! Index range
DUR, WOOD, PROFIT: array(PRODS) of real ! Coefficients
x: array(PRODS) of mpvar ! Array of variables

end-declarations

initializations from "chess.dat" ! Read data from file
DUR WOOD PROFIT ! chess.dat: PROFIT: [5 20]

end-initializations ! DUR: [3 2]
! WOOD: [1 3]

sum(i in PRODS) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in PRODS) WOOD(i)*x(i) <= 200
forall(i in PRODS) x(i) is_integer
maximize(sum(i in PRODS) PROFIT(i)*x(i))
writeln("Solution: ", getobjval)
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Data file chess.dat

• Every data item/table has a label, its identifier
• Single line comments (marked with ’!’)

! Data file for ’chess4.mos’

DUR: [3 2]
WOOD: [1 3]
PROFIT: [5 20]

Sparse data format

• Every data entry specified with its index tuple
• Can read data from one labeled data source

into several Mosel data tables at once

– data tables must have identical indices

initializations from ’chess.dat’
[DUR, WOOD, PROFIT] as ’ChessData’

end-initializations

• Format of data file with several data values in
one labeled data range (use a * for a missing
data value)

! chess.dat

ChessData: [
(1) [3 1 5]
(2) [2 3 20]

]

Writing data out to text files

• You can write out values in an analogous way
to reading them in using initializations
to

• To write out the solution values of variables,
or other solution values (slack, activity, dual,
reduced cost) you must first put the values into
a data table

declarations
x_sol: array(PRODS) of real

end-declarations

forall(i in PRODS)
x_sol(i) := getsol(x(i))

initializations to ’result.dat’
x_sol

end-initializations

Free format text files

fopen("result.dat", F_OUTPUT+F_APPEND)

forall(i in PRODS)
writeln(i, ": ", getsol(x(i))

fclose(F_OUTPUT)
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Project work [C-2]: Arrays and index sets

• Modify the model chess4.mos to use indices
of type string.

• Execute this new model chess4s.mos with
data set chess2.dat.

• Output the solution values to file sol.dat us-
ing initializations to.

• Modify the models further to read the con-
tents of the index set from file (chess5.mos,
chess5s.mos).

2.2.2 Dynamic arrays
• Mosel provides a user friendly and efficient

means of modeling mathematical program-
ming problems

• Objects such as dynamic arrays and variable
index sets, together with efficient loops and
sums, allow large scale models to be written
easily, and execute quickly

• Dynamic array: indexing sets not known
at declaration, or array explicitly marked
dynamic

• Initialize dynamic data arrays from text files or
using ODBC

– data must use sparse format
– this is so Mosel can work out the values of

the indices
– reading in the data array initializes both

the index values and the data values at
the same time

Dynamic arrays of decision variables

• An entry of a dynamic array is only created
when a value is assigned to it

• Decision variables don’t get created, because
you don’t assign values to them

• To create decision variables in a dynamic array,
use the create procedure

declarations
TIME: range ! = set of contiguous integers
COST: array(TIME) of real
use: array(TIME) of mpvar

end-declarations

(...) ! Read in COST data etc

forall(t in TIME | exists(COST(t)))
create(use(t))
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• Note: if you declare decision variables after
reading in the data, then decision variables
will be created for all combinations of the in-
dex set elements that exist at that time

• Do not use create in this case
• Define decision variables before reading in

data if you want to use create to control ex-
actly which elements get created

Dynamic arrays

• Use dynamic arrays

– to size data tables automatically when the
data is read in

– to initialize the index values automatically
when the data is read in

– to conserve memory when storing sparse
data

– to eliminate index combinations without
using conditions each time

• Don’t use dynamic arrays

– when you can use an ordinary (static) ar-
ray instead

– when storing dense data, and you can size
the data table and initialize the indices in
some other way
(dynamic arrays are slower and use more
memory than a static array when storing
dense data)

2.2.3 Run-time parameters

Data input from file: Chess 4 completed
uses "mmxprs"
parameters
FILENAME="chess.dat" ! Name of the data file

end-parameters

declarations
PRODS = 1..2 ! Index range
DUR, WOOD, PROFIT: array(PRODS) of real ! Coefficients
x: array(PRODS) of mpvar ! Array of variables

end-declarations

initializations from FILENAME ! Read data from file
DUR WOOD PROFIT

end-initializations

sum(i in PRODS) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in PRODS) WOOD(i)*x(i) <= 200
forall(i in PRODS) x(i) is_integer
maximize(sum(i in PRODS) PROFIT(i)*x(i))
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Run-time parameters

• Parameters

– a special type of constant
– default value may be overriden at run-

time

parameters
DATA_DIR = ’c:/data’
DEBUG = true
NUM_RECORDS = 1000

end-parameters

• The value in the model is used by default
• A different value may be given at run-time

– In IVE, an alternative value may be set in
the Build � Options dialogue

– When running a Mosel model from an ap-
plication, an alternative value can be set
in the parameters string

• A parameters section must come at the top
of the model

– after any uses or options statements
– before any other statements

• Parameters are especially useful for passing di-
rectories/paths into the model

– all files referenced in the model should
use a directory parameter

– otherwise, Mosel may not be able to find
the file when the model is deployed (the
default path differs when run from an ap-
plication)

– use ’+’ to join strings

• Specifying directory paths

– preferably use ’/’ as directory separator

parameters
DIR = ’.’

end-parameters

fopen(DIR+’/cap.dat’, F_INPUT)
...
fclose(F_INPUT)
...
initializations from DIR+’/cost.dat’
...

Project work [C-3]: Run-time parameters

• In models chess5.mos and chess5s.mos
turn the data file name into a run-time param-
eter.

• Re-run your model chess5s.mos with the
larger data set chess3.dat without changing
the filename in the model.
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• Setting runtime parameters within IVE:

– select menu Build � Options or click on
the button

– check Use model parameters to activate
the parameter input field and enter the
new value(s)

• Runtime parameters from the command line:

mosel -c "exe chess5s.mos DATAFILE=’chess3.dat’"

– or:

mosel
exe chess5s.mos DATAFILE=’chess3.dat’
quit

2.2.4 Using other data sources
• The initializations block can work with

many different data sources and formats
thanks to the notion of I/O drivers

• I/O drivers for physical data files:
mmodbc.excel, mmoci.oci, mmetc.diskdata

• Other drivers available, e.g. for data exchange
in memory

• Change of the data source = change of the I/O
driver, no other modifications to your model

Data transfer using ODBC

• First, must check ODBC driver for your chosen
data source (external to Xpress)

– Start � Settings � Control Panel � Ad-
ministrative Tools � Data Sources (ODBC)

– Check that data source is defined, and
note its name (the data source name,
DSN)

• Next, identify specific data source – a database
or spreadsheet

– note its location (path)
– the data must be in a table in a database,

or a named range in a spreadsheet

• Now, in your model

– use the mmodbc module (requires licence)
– use the odbc driver in initializations

blocks, or
– write out the corresponding SQL com-

mands:
∗ set up an ODBC data connection to

the specific data source
∗ input data using SQL statements
∗ disconnect
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Reading data via ODBC

• Excel spreadsheet (’ChessData’ = range in the
spreadsheet):

initializations from ’mmodbc.odbc:chess.xls’
[DUR, WOOD, PROFIT] as ’ChessData’

end-initializations

• Access database (’ChessData’ = data table):

initializations from ’mmodbc.odbc:debug;chess.mdb’
[DUR, WOOD, PROFIT] as ’ChessData’

end-initializations

Data export to a database

initializations to ’mmodbc.odbc:debug;chess.mdb’
x_sol as ’ChessSol’

end-initializations

• Before every new run, delete the data from
the previous run in the destination range/table

• Otherwise the new results will either be ap-
pended to the existing ones or, if ’PRODS’ has
been defined as key field in a database, the
insertion will fail

Special notes for data export to Excel

• Make sure the ’Read Only’ option is disabled in
the ODBC data source set-up options

• Define the destination range in the spread-
sheet, with one line of column headings, one
line of dummy data, and no other data

• Excel does not support the full range of
ODBC functionality (commands like ’update’
or ’delete’ will fail)
⇒ preferably use direct connection (excel
driver)

Data exchange with MS Excel

• Software-specific driver excel for MS Excel

– use mmodbc module (requires licence)
– use the excel driver (instead of odbc) in
initializations blocks

– no driver setup required (works with stan-
dard Excel installation)

– simply replace "mmodbc.odbc:" by
"mmodbc.excel:skiph;" in the preced-
ing examples
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Data exchange with Oracle

• Software-specific driver oci for Oracle
databases

– use mmoci module (requires licence)
– setup: Oracle’s Instant Client package

must be installed on the machine running
the Mosel model

– in initializations blocks replace
"mmodbc.odbc:" by "mmoci.oci:" in
the preceding examples

– supports SQL statements (replace the pre-
fix SQL by OCI)

SQL

• The I/O driver odbc generates automatically
the SQL commands required to connect to the
database/spreadsheet

• For advanced uses module mmodbc also de-
fines most standard SQL commands directly for
the Mosel language

Project work [C-4]: ODBC

• Check that the ODBC DSN for Excel is set up on
your computer

• Re-run your model chess5.mos with the Excel
file chess.xls

Summary

• We have seen that it is possible to completely
separate the data and the model

• The model specifies the logic of the problem,
without any reference to its size

• The model can be applied to any data instance,
simply by providing data files

Reference material

• Refer to the Mosel User Guide for a detailed
introduction to working with Mosel.

• The book Applications of optimization with
Xpress-MP provides a large collection of exam-
ples models from different application areas.

• See the whitepaper Using ODBC and other
database interfaces with Mosel for further de-
tail on data handling.
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2.3 Advanced modeling topics
Notes

Topics

• MIP variable types
• Modeling with binary variables

2.3.1 MIP variable types
• Binary variables

– can take either the value 0 or the value 1
(do/ don’t do variables)

– model logical conditions

x(4) is_binary

• Integer variables

– can take only integer values
– used where the underlying decision vari-

able really has to take on a whole number
value for the optimal solution to make
sense

x(7) is_integer

• Partial integer variables

– can take integer values up to a specified
limit and any value above that limit

– computational advantages in problems
where it is acceptable to round the LP so-
lution to an integer if the optimal value
of a decision variable is quite large, but
unacceptable if it is small

x(1) is_partint 5 ! Integer up to 5, then continuous

• Semi-continuous variables

– can take either the value 0, or a value be-
tween some lower limit and upper limit

– help model situations where if a variable
is to be used at all, it has to be used at
some minimum level

x(2) is_semcont 6 ! A ’hole’ between 0 and 6, then continuous

• Semi-continuous integer variables

– can take either the value 0, or an integer
value between some lower limit and up-
per limit

– help model situations where if a variable
is to be used at all, it has to be used at
some minimum level, and has to be inte-
ger

x(3) is_semint 7 ! A ’hole’ between 0 and 7, then integer
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• Special Ordered Sets of type one (SOS1)

– an ordered set of variables at most one of
which can take a non-zero value

– single choice among several possibilities

• Special Ordered Sets of type two (SOS2)

– an ordered set of variables, of which at
most two can be non-zero, and if two
are non-zero these must be consecutive in
their ordering

– e.g. approximation of non-linear func-
tions with a piecewise linear function

SOS definition

• WEIGHT array determines the ordering of the
variables:

MYSOS:= sum(i in IRng) WEIGHT(i)*x(i) is_sosX

where is_sosX is either is_sos1 or is_sos2

• Alternative: set S of set members, linear con-
straint L with ordering coefficients (= refer-
ence row entries):

makesos1(S,L); makesos2(S,L)

– must be used if the coefficient
WEIGHT(i) of an intended set mem-
ber is zero

• Note: the ordering coefficients must all be dis-
tinct (or else they are not doing their job of
supplying an order!)

2.3.2 Modeling with binary variables

Logical conditions

• Projects A, B, C, D
• Binary variables a, b, c, d

– do at most 3 projects: a + b + c + d ≤ 3
– must do D if A done: d ≥ a
– can only do C if both A and B done:

c ≤ (a + b) / 2
c ≤ a, c ≤ b

Disjunctions

• Either
5 ≤ x ≤ 10

or
80 ≤ x ≤ 100

• Introduce a new variable:
ifupper: 0 if 5 ≤ x ≤ 10; 1 if 80 ≤ x ≤ 100

x ≤ 10 + (100− 10) · ifupper [1]

x ≥ 5 + (80− 5) · ifupper [2]
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• Either 5 ≤
∑

i Aixi ≤ 10
or 80 ≤

∑
i Aixi ≤ 100

∑
i

Aixi ≤ 10 + 90 · ifupper∑
i

Aixi ≥ 5 + 75 · ifupper

Absolute values

• Two variables
x1, x2

with
0 ≤ xi ≤ U [1. i]

want
y = |x1 − x2|

• Introduce binary variables

d1, d2

to mean
d1 : 1 if x1 − x2 is the positive value
d2 : 1 if x2 − x1 is the positive value

• MIP formulation of y = |x1 − x2|
0 ≤ xi ≤ U [1.i]

0 ≤ y − (x1 − x2) ≤ 2 · U · d2 [2]

0 ≤ y − (x2 − x1) ≤ 2 · U · d1 [3]

d1 + d2 = 1 [4]

Project work [C-5]: Logical constraints

• Take a look at the capital budgeting model
in capbgt.mos: the objective is to determine
the most profitable choice among 8 possible
projects, subject to limited resources (person-
nel and capital)

• Formulate the following additional con-
straints:

– P1 can only be done if P2 is done
– P1 can only be done if P3 and P6 are done
– It is not possible to do both P5 and P6
– Either P1 and P2 must be done or P3 and

P4 (but not both pairs).
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2.4 Programming language features
Notes

Mosel: A programming environment

• Selections
• Loops
• Set operations
• Subroutines
• Data structures

2.4.1 Selections
• if

if A >= 20 then
x <= 7

elif A <= 10 then
x >= 35

else
x = 0

end-if

• case

case A of
-1000..10 : x >= 35
20..1000 : x <= 7
12, 15 : x = 1
else x = 0

end-case

2.4.2 Loops
• forall [do]
• while [do]
• repeat until

Example: Prime numbers

• Implements the ‘Sieve of Eratosthenes’.

SNumbers = {2, . . . , L}
n := 2
repeat

while (n 6 ∈SNumbers) n := n + 1
SPrime := SPrime ∪ {n}
i := n
while (i ≤ L)

SNumbers := SNumbers\{i}
i := i + n

until SNumbers = {}

model Prime
parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers

end-declarations

SNumbers:={2..LIMIT}
writeln("Prime numbers between 2 and ", LIMIT, ":")
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n:=2
repeat
while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers-= {i}
i+=n

end-do
until SNumbers={}

writeln(SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

Operations on sets

• Set operators include

– union: +
– intersection: *
– difference: -

• Logical expressions using sets include

– subset: Set1 <= Set2
– superset: Set1 >= Set2
– equals: Set1 = Set2
– not equals: Set1 <>Set2
– element of: ’Oil5’ in Set1
– not element of: ’Oil5’ not in Set1

2.4.3 Functions and procedures
• Similar structure as model, including the
declarations blocks

• Terminated by end-function or
end-procedure

• Function defines returned with its return
value

• forward declaration
• Overloading possible (each version with a dif-

ferent number or types of arguments)

Example: Quick Sort algorithm

1. Choose a middle value v for partitioning (here:
v = (min + max) / 2)

2. Divide the list into two parts ‘left’ (all elements
x < v) and ‘right’ (all elements x > v)

3. Repeat from 1. for lists ‘left’ and ‘right’

model "Quick Sort"
parameters
LIM=50

end-parameters
! Declare procedures that are defined later

forward procedure qsort(L:array(range) of integer)
forward procedure qsort(L:array(range) of integer, s,e:integer)

declarations
T:array(1..LIM) of integer

end-declarations
! Generate randomly an array of numbers

forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
time:=gettime

qsort(T) ! Sort the array
writeln(T) ! Print the sorted array
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! Swap the positions of two numbers in an array
procedure swap(L:array(range) of integer, i,j:integer)
k:=L(i)
L(i):=L(j)
L(j):=k

end-procedure

! Start of the sorting process
procedure qsort(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))

end-procedure

! Sorting routine
procedure qsort(L:array(range) of integer, s,e:integer)
v:=L((s+e) div 2)
i:=s; j:=e
repeat
while(L(i)<v) i+=1
while(L(j)>v) j-=1
if i<j then
swap(L,i,j)
i+=1; j-=1

end-if
until i>=j
if j<e and s<j then qsort(L,s,j); end-if
if i>s and i<e then qsort(L,i,e); end-if

end-procedure

end-model

2.4.4 Data structures
• array
• set
• list
• record
• ... and any combinations thereof, e.g.,

S: set of list of integer
A: array(range) of set of real

List

• Collection of objects of the same type
• May contain the same element several times
• Order of list elements is specified by construc-

tion
• Handling: cuthead, splittail, reverse...

declarations
L: list of integer
M: array(range) of list of string

end-declarations

L:= [1,2,3,4,5]
M:: (2..4)[[’A’,’B’,’C’], [’D’,’E’], [’F’,’G’,’H’,’I’]]

Record

• Finite collection of objects of any type
• Each component of a record is called a ’field’

and is characterized by its name and its type

declarations
ARC: array(ARCSET:range) of record
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
end-declarations

ARC(1).Source:= "B"
ARC(3).Cost:= 1.5
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User types

• Treated in the same way as the predefined
types of the Mosel language

• New types are defined in declarations
blocks by specifying a type name, followed by
=, and the definition of the type

declarations
myreal = real
myarray = array(1..10) of myreal
COST: myarray

end-declarations

• Typical uses

– shorthand for repetitions in declarations
– naming records

declarations
arc = record
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
A: arc
ARC: array(ARCSET:range) of arc

end-declarations

Summary: Language features

• Data structures: array, set, list, record
• Selections: if-then-[elif-then]-[else], case
• Loops: forall-[do], while-[do], repeat-until
• Operators:

– standard arithmetic operators
– aggregate operators (sum, prod, and, or,

min, max, union, intersection)
– set operators

• Subroutines: functions, procedures
(forward declaration, overloading)

2.4.5 Programming solution algorithms

Mosel: A solving environment

• No separation between ‘modeling statements’
and ‘solving statements’

• Programming facilities for pre/postprocessing,
algorithms

• Principle of incrementality
• Not solver-specific
• Possibility of interaction with solver(s)

Solving: Variable fixing heuristic

• Solution heuristic written with Mosel
• Program split into several source files
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Solving: Variable fixing heuristic (main file)

model Coco
uses "mmxprs"

include "fixbv_pb.mos"
include "fixbv_solve.mos"

solution:=solve
writeln("The objective value is: ", solution)

end-model

Solving: Variable fixing heuristic (model)

declarations
RF=1..2 ! Range of factories (f)
RT=1..4 ! Range of time periods (t)
(...)
openm: array(RF,RT) of mpvar

end-declarations

(...)
forall(f in RF,t in 1..NT-1) Closed(f,t):= openm(f,t+1) <= openm(f,t)
forall(f in RF,t in RT) openm(f,t) is_binary

Solving: Variable fixing heuristic (algorithm)

function solve:real
declarations
osol: array(RF,1..2) of real
bas: basis

end-declarations

setparam("XPRS_PRESOLVE",0)
setparam("zerotol", 5.0E-4) ! Set Mosel comparison tolerance
maximize(XPRS_LPSTOP,MaxProfit) ! Solve the root LP
savebasis(bas) ! Save the basis

forall(f in RF, t in 1..2) do ! Fix some binary variables
osol(f,t):= getsol(openm(f,t))
if osol(f,t) = 0 then
setub(openm(f,t), 0.0)

elif osol(f,t) = 1 then
setlb(openm(f,t), 1.0)

end-if
end-do

maximize(XPRS_CONT,MaxProfit) ! Solve modified problem
solval:=getobjval ! Save solution value

forall(f in RF, t in 1..2) ! Reset variable bounds
if((osol(f,t) = 0) or (osol(f,t) = 1)) then
setlb(openm(f,t), 0.0)
setub(openm(f,t), 1.0)

end-if

loadbasis(bas) ! Load previously saved basis
setparam("XPRS_MIPABSCUTOFF", solval) ! Set cutoff value
maximize(MaxProfit) ! Solve original problem
returned:= if(getprobstat=XPRS_OPT, getobjval, solval)

end-function
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2.5 Mosel modules and packages
Notes

Mosel: A modular environment

• Open architecture:

– possibility to define language extensions
via packages or modules without any
need to modify the core of the Mosel lan-
guage

• Package = library written in the Mosel lan-
guage

– making parts of Mosel models re-usable
– deployment of Mosel code whilst protect-

ing your intellectual property
– similar structure as models (keyword
model is replaced by package), compiled
in the same way

– included with the uses statement
– definition of new types, subroutines, sym-

bols
– see examples in the Mosel User Guide

• Module = dynamic library written in C

– modules of the Mosel distribution:

∗ solver interfaces: Xpress-Optimizer
(LP, MIP, QP), SLP, SP, CP

∗ database access: ODBC, OCI
∗ system commands; model handling;

graphics

– write your own modules for

∗ connecting to external software
∗ time-critical tasks
∗ defining new types, subroutines, op-

erators, I/O drivers, control parame-
ters, symbols

Some highlights of module features

• Interaction with external programs during
their execution (callback functions)

• Access to other solvers and solving paradigms
(NLP, CP)

• Implementation of graphical applications
(mmive, XAD)
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Module mmxprs: Using callback functions
uses "mmxprs"

declarations
x: array(1..10) of mpvar

end-declarations

public procedure printsol
writeln("Solution: ", getsol(Objective))
forall(i in 1..10) write("x(", i, ")=", getsol(x(i)), "�")
writeln

end-procedure

setcallback(XPRS_CB_INTSOL, "printsol")

Module mmxslp: Solving an NLP by SLP

• What is the greatest area of a polygon of N
sides and a diameter of 1?

model "Polygon"
uses "mmxslp"

declarations
N=5
area: gexp
rho, theta: array(1..N) of mpvar
objdef: mpvar
D: array(1..N,1..N) of genctr

end-declarations

forall(i in 1..N-1) do ! Initialization of SLP variables
rho(i) >= 0.1; rho(i) <= 1
SLPDATA("IV", rho(i), 4*i*(N + 1 - i)/((N+1)^2))
SLPDATA("IV", theta(i), M_PI*i/N)

end-do

forall(i in 1..N-2, j in i+1..N-1) ! Third side of all triangles
D(i,j):= rho(i)^2 + rho(j)^2 -

rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <= 1

! Vertices in increasing order
forall(i in 2..N-1) theta(i) >= theta(i-1) +.01

theta(N-1) <= M_PI ! Boundary conditions

area:= ! Objective: sum of areas
(sum(i in 2..N-1) (rho(i)*rho(i-1)*sin(theta(i)-theta(i-1))))*0.5

objdef = area; objdef is_free
SLPloadprob(objdef)
SLPmaximize

writeln("Area = ", getobjval)
end-model

Module kalis: Constraint Programming

• Example: jobshop scheduling

– schedule the production of a set of jobs
on a set of machines. Every job is pro-
duced by a sequence of tasks, each of
these tasks is processed on a different ma-
chine. A machine processes at most one
job at a time.

• Implementation with high-level modeling ob-
jects (tasks and resources)
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model "Job Shop"
uses "kalis"

declarations
JOBS = 1..NJ ! Set of jobs
MACH = 1..NM ! Set of resources
RES: array(JOBS,MACH) of integer ! Resource use of tasks
DUR: array(JOBS,MACH) of integer ! Durations of tasks

res: array(MACH) of cpresource ! Resources
task: array(JOBS,MACH) of cptask ! Tasks

end-declarations

... ! Initialize the data

HORIZON:= sum(j in JOBS, m in MACH) DUR(j,m)

forall(j in JOBS) getend(task(j,NM)) <= HORIZON

! Setting up the resources (capacity 1)
forall(m in MACH)
set_resource_attributes(res(m), KALIS_UNARY_RESOURCE, 1)

! Setting up the tasks (durations, resource used)
forall(j in JOBS, m in MACH)
set_task_attributes(task(j,m), DUR(j,m), res(RES(j,m)))

! Precedence constraints between the tasks of every job
forall (j in JOBS, m in 1..NM-1)
setsuccessors(task(j,m), {task(j,m+1)})

! Solve the problem & print solution
if cp_schedule(getmakespan)<>0 then
writeln("Total completion time: ", getsol(getmakespan))

end-if
end-model

Module mmive: Drawing user graphs

model "Schedule"
uses "mmive", "mmsystem"

declarations
MACHINES=6; JOBS=6
graphs, colors: array(1..MACHINES) of integer
labels: array(1..JOBS) of integer
curmachine, curjobs, n1, n2, n3: integer

end-declarations

colors:: [IVE_WHITE, IVE_YELLOW, IVE_CYAN, IVE_RED, IVE_GREEN,
IVE_MAGENTA]

fopen("schedule.dat", F_INPUT)

forall (i in 1..MACHINES) do
graphs(i):= IVEaddplot("Machine "+i, IVE_BLUE)
labels(i):= IVEaddplot("Jobs for machine "+i, Color(i))

end-do

forall (i in 1..MACHINES) do
readln(n1, n2) ! Read machine no. & no. of jobs
writeln("Machine ", n1, " Jobs:", n2)
curmachine:= n; curjobs:= n2
forall(j in 1..curjobs) do
readln(n1, n2, n3) ! Read job no., start & finish times
writeln("On machine ", curmachine, " job ", n1,

" starts at ", n2, " and finishes at ", n3)
IVEdrawarrow(graphs(curmachine), n2, curmachine, n3, curmachine)
IVEdrawlabel(labels(n1), (n2+n3)/2, curmachine,

"Job "+n1+"\r starts: "+n2+"\r ends: "+n3)
end-do

end-do

IVEzoom(0, 0, 30, 7)
fclose(F_INPUT)

end-model
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And also

• Working with several models in parallel, pos-
sibly in a heterogeneous distributed architec-
ture (module mmjobs)

– see whitepaper Multiple models and par-
allel solving with Mosel

• Combining different solvers

– see whitepaper Hybrid MIP/CP solving
with Xpress-Optimizer and Xpress-Kalis

Reference material

• The modules of the Mosel distribution are
documented in the Mosel Language Refer-
ence Manual (with separate manuals for solver
modules mmxslp and kalis)

• The Mosel Native Interface User Guide explains
how to write your own modules.
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Embedding Mosel models

3.1 Embedding models in applications
Notes

What is the Mosel API?

• The Mosel language allows you to formulate
optimization problems, and develop optimiza-
tion methods (i.e., use the Optimizer to solve
them), as a Mosel model

• The Mosel API (also Mosel libraries) allows you
to embed Mosel models in an application

Programming environments

• The Mosel API is available for C/C++, Java, .NET
and VB

• We use Java in the slides, but the functionality
applies to all languages, and similar applica-
tions can be developed in other languages

Mosel libraries

• Model Compiler Library

– compiles to a virtual machine
– binary format architecture independent

• Runtime Library

– load and run binary (models)
– access to Mosel internal database (data,

solution values, ...)

Generating a deployment template

• With Xpress-IVE: select Deploy � Deploy or
click the deploy button

• Choose the application language:
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• Clicking on the Next button will open a new
window with the resulting code

• Use the Save as button to set the name and
location of the new file.

Mosel library functions

• General:

XPRM(), XPRM.getVersion, XPRM.license, ...

• Model handling:

XPRM.compile, XPRM.loadModel, XPRMModel.run, XPRMmodel.getResult,
XPRMModel.getExecStatus, XPRMModel.reset, ...

• Solution information:

XPRMModel.getObjectiveValue, XPRMModel.getProblemStatus,
XPRMMPVar.getSolution, XPRMLinCtr.getActivity, ...

• Accessing model objects:

XPRMModel.findIdentifier

• Arrays:

XPRMArray.getDimension, XPRMArray.getIndexSets,
XPRMArray.getFirstIndex, XPRMArray.nextIndex, XPRMArray.get, ...

• Sets:

XPRMSet.getSize, XPRMSet.getFirstIndex, XPRMSet.isFixed, ...

• Handling of modules:

XPRM.findModule, XPRM.setModulesPath, XPRMModule.parameters, ...

Project work [C-6]: Model deployment

• Use IVE to generate a Java program that com-
piles and runs model chess5.mos

• Modify the program so that the model execu-
tion uses the data file chess4.dat.

• Check the problem status and output the ob-
jective value.

Extending the example

• Retrieving detailed solution information and
model data

XPRMModel model;
XPRMSet prods;
XPRMArray profit, ax;
XPRMMPVar x;
int[] idx = new int[1];
double val;

// Retrieve solution values and problem data
prods = (XPRMSet)model.findIdentifier("PRODS");
profit = (XPRMArray)model.findIdentifier("PROFIT");
ax = (XPRMArray)model.findIdentifier("x");

// Get the first entry of array ’ax’
// (we know that the array is dense and has a single dimension)
idx = ax.getFirstIndex();
do
{
x = ax.get(idx).asMPVar(); // Get a variable from ’ax’
val = profit.getAsReal(idx); // Get the corresponding value
System.out.println(prods.get(idx[0]) + ": " + x.getSolution() +

"\t (profit: " + val + ")");
// Print the solution value

} while(ax.nextIndex(idx)); // Get the next index

Embedding Mosel models c©2010 Fair Isaac Corporation. All rights reserved. page 37



• Data exchange in memory with host applica-
tion

public class chessio
{
static int NP = 4; // Input data
static final double[] dur = {3, 2, 2, 3};
static final double[] wood = {1, 2, 3, 6};
static final double[] profit = {5,12,20,40};

// Array for solution values
static double[] solution = new double[NP];

public static void main(String[] args) throws Exception
{
int result;
XPRMModel model;
XPRM xprm;

xprm = new XPRM(); // Initialize Mosel
xprm.compile("chess5ioj.mos"); // Compile + load model
model = xprm.loadModel("chess5ioj.bim");
xprm.bind("DUR", dur); // Associate Java objects with
xprm.bind("WOOD", wood); // names in Mosel
xprm.bind("PROFIT", profit);
xprm.bind("xsol", solution);
model.execParams = "NP="+NP; // Set runtime parameters
model.run(); // Run the model
if (model.getProblemStatus()==model.PB_OPTIMAL)
{ // Check problem status and display the solution
System.out.println("Objective: " + model.getObjectiveValue());
for(int i=0;i<NP;i++)
System.out.println("x(" + (i+1) + "): " + solution[i] +

"\t (profit: " + profit[i] + ")");
}
model.reset();

}
}

Summary

• Mosel libraries allow you to embed model pro-
grams directly in your application

• Access the solution directly in your application,
as alternative to using ODBC

• Enjoy benefits of structured modeling lan-
guage and rapid deployment when building
applications

• May choose to work with compiled models
rather than model source files – provides pro-
tection against the user viewing / changing the
model

• Compiled models are platform independent

Reference material

• You will find it helpful to refer to the Mosel
Libraries Reference Manual

• The part ’Working with the Mosel libraries’ of
the Mosel User Guide documents examples for
different programming language interfaces
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Summary and further information

4.1 Summary
Notes

• Have seen:

– FICO Xpress product suite
∗ solvers
∗ modeling interfaces
∗ development environment

• Have seen:

– Modeling with Mosel

∗ formulating Linear and Mixed Integer
Programming (LP and MIP) problems

∗ accessing data sources
∗ programming language features
∗ language extensions (modules and

packages)

– Embedding models in applications for de-
ployment

Further information

• Xpress website:
http://www.fico.com/xpress

• Examples database:
http://examples.xpress.fico.com

• Whitepapers, documentation:
http://optimization.fico.com
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