
www.fico.com Make every decision countTM

Modeling and problem
solving with Mosel

FICO Xpress Training

Last update 28 August, 2010

Contents

Introduction, Xpress overview 1
1.1 Overview of Xpress . 1
1.2 Why use modeling software? . 4
1.3 Xpress-IVE demonstration . 5

Modeling with Mosel 8
2.1 Modeling basics . 8

2.1.1 A first model . 8
2.1.2 Data structures and loops . 13
2.1.3 Model building style . 15

2.2 Accessing data sources . 16
2.2.1 The initializations block . 16
2.2.2 Dynamic arrays . 18
2.2.3 Run-time parameters . 19
2.2.4 Using other data sources . 21

2.3 Advanced modeling topics . 24
2.3.1 MIP variable types . 24
2.3.2 Modeling with binary variables . 25

2.4 Programming language features . 27
2.4.1 Selections . 27
2.4.2 Loops . 27
2.4.3 Functions and procedures . 28
2.4.4 Data structures . 29
2.4.5 Programming solution algorithms . 30

2.5 Mosel modules . 32

Embedding Mosel models 36
3.1 Embedding models in applications . 36

Summary and further information 39
4.1 Summary . 39

Xpress Training c©2010 Fair Isaac Corporation. All rights reserved. page 1

Introduction, Xpress overview

Topics

• Introduction to Xpress
• Modeling with Mosel:

– Linear and Mixed Integer Programming
(LP and MIP)

– Accessing data sources
– Programming language features

• Embedding models in applications

Aims

• At the end of the course you will

– be familiar with optimization methods
and the terminology used to describe
them

– be confident about formulating optimiza-
tion models and understanding the solu-
tion

– know how use Xpress to model and solve
problems

– be able to embed a model in a application

Other materials

• Not a replacement for the reference manuals!
• Focuses on areas that are of practical impor-

tance
• Does not try to be exhaustive
• Pointers to reference material at the end of ev-

ery chapter

1.1 Overview of Xpress
Notes

• Optimization algorithms

– enables you to solve different classes of
problems

– built for speed, robustness and scalability

• Modeling interfaces

– enables you to provide your problem in
the most suitable way for your application

– built for ease of use and interfacing

Xpress Training c©2010 Fair Isaac Corporation. All rights reserved. page 1

Optimization algorithms

LP MIQPMIPQCQP

Primal & Dual
Simplex

Barrier

Branch & Cut
MIP

SLP

Optimizer

NLP MINLPMIQCQP

Modeling interfaces

• Mosel

– formulate model and develop optimiza-
tion methods using Mosel language / en-
vironment

• BCL

– build up model in your application code
using object-oriented model builder li-
brary

• Optimizer

– read in matrix files
– input entire matrix from program arrays

Mosel

• A modeling and solving environment

– integration of modeling and solving
– programming facilities
– open, modular architecture

• Interfaces to external data sources (e.g. ODBC,
host application) provided

• Language is concise, user friendly, high level
• Best choice for rapid development and deploy-

ment

Mosel: Components and interfaces

• Mosel language: to implement problems and
solution algorithms
⇒ model or Mosel program

• Mosel Model Compiler and Run-time Libraries:
to compile, execute and access models from a
programming language
⇒ C/C++, C#, Java, or VB program

Introduction, Xpress overview c©2010 Fair Isaac Corporation. All rights reserved. page 2

• Mosel Native Interface (NI): to provide new or
extend existing functionality of the Mosel lan-
guage
⇒ module

• Xpress-IVE: graphical user interface, represen-
tation of the problem matrix, solution sta-
tus/progress graphs, and result display

Mosel model extract

declarations
use: array(OILS,TIME) of mpvar
MaxRev: linctr
Inven: array(OILS,TIME) of linctr

end-declarations

MaxRev := sum(i in OILS, t in TIME) (FOODPRICE*use(i,t) -
SCOST*store(i,t) - COST(i,t)*buy(i,t))

forall(t in TIME) do
MaxVegRef(t) := sum(i in VOILS) use(i,t) <= MAXREFVEG
forall(i in OILS) do
Inven(i,t) := store(i,t) = store(i,t-1) + buy(i,t) - use(i,t)
ifuse(i,t) is_binary

end-do
end-do

Mosel Libraries

• Embed Mosel models directly in your applica-
tion

• Access the solution within your application
• Compiled models are platform independent
• Enjoy benefits of structured modeling lan-

guage and rapid deployment when building
applications

• Available for C, Java, C#, and VB

Xpress-IVE

• Visual Studio style visual development envi-
ronment for optimization & model building
with Mosel

• Mosel model editor & compiler
• Real time graphs show optimization perfor-

mance
• Browse solution values in entity tree

Xpress-BCL

• Model consists of BCL functions within appli-
cation source code (C, C++, Java, C# or VB)

• Develop with standard C/C++/Java/C#/VB tools
• Provide your own data interfacing
• Lower level, object oriented approach
• Enjoy benefits of structured modeling within

your application source code

Introduction, Xpress overview c©2010 Fair Isaac Corporation. All rights reserved. page 3

BCL extract

for (f = 0; f < NF; f++)
for (t = 0; t < NT; t++) {
open[f][t] = prob.newVar("open", XPRB_BV);
make[f][t] = prob.newVar("make", XPRB_PL, 0, 100);

}

MaxProfit = prob.newCtr("MaxProfit");
for (f = 0; f < NF; f++)
for (t = 0; t < NT; t++)
MaxProfit += -MCOST[f]*make[f][t];

for (f = 0; f < NF; f++)
for (t = 0; t < NT; t++)
MxMake[f][t] =
prob.newCtr("MxMake", make[f][t] <= MXMAKE[f]*open[f][t]);

Xpress-Optimizer

• Model is set of arrays within application source
code (C, Java, C#, or VB)

• May also input problems from a matrix file
• Develop with standard C/C#/Java/VB tools
• Provide your own data interfacing
• Very low level, no problem structure
• Most efficient but lose easy model develop-

ment and maintenance

Mosel and Optimizer Consoles

• Stand-alone command line executables with
text interfaces

• Useful for simple deployment using
batch/script files

• Available for all platforms supported by Xpress

Why choose Xpress?

• Active research and development
• Performance & reliability
• Problem classes & sizes
• Choice of modeling software
• Support

1.2 Why use modeling software?
Notes

& analysis
Interpretation

conception
Problem

Model

Computational

Computational
solution instance

Model solution

problem instance

Human Computer

Introduction, Xpress overview c©2010 Fair Isaac Corporation. All rights reserved. page 4

• Developing a working model is the difficult bit
• Important to have software that helps

– speed to market
– verify correctness
– maintenance & modification
– algorithmic considerations
– execution speed

Xpress modeling software

• The concepts we describe – how to formulate
and solve problems – apply to all modeling
software

• In this course we will use the Xpress-IVE devel-
opment environment with the Xpress-Mosel
language because it is

– easy to understand and learn
– easy to use

Xpress optimization software

• Whether you use Mosel, BCL, or interface to
the Optimizer directly, your models will all be
solved using the Xpress-Optimizer

• The optimization performance will be the
same no matter which modeling software you
use

1.3 Xpress-IVE demonstration
Notes

• Models: new, saving, opening, switching
start a new model

open an existing model

save current model

show list of available modules
• Bars: editor, entity, info, output (run)

switch between window layouts

Introduction, Xpress overview c©2010 Fair Isaac Corporation. All rights reserved. page 5

• Editor: colors, auto-complete, tool tips

copy selection

cut selection

paste selection

go to next / last line with same indentation

go to previous / next cursor position (line)

undo / redo last editor command

• Compile, run
compile current model

execute current model

open run options dialog

pause execution

interrupt execution

search for the N best solutions

start infeasibility repair

• Output bar: log, stats, matrix, graphs, tree
• Viewing solution values
• Problem and matrix export and import

generate BIM file

export the problem matrix

optimize an imported matrix

• Search, bookmark
search

delete bookmarks
• Help

help

model generation wizzard & example models

module generation wizzard

• Debugger
set/delete breakpoint at cursor

define conditional breakpoint

start/stop debugger

step over an expression

step into an expression

run up to the cursor

show debugger options dialog
• Profiler

start the profiler

Introduction, Xpress overview c©2010 Fair Isaac Corporation. All rights reserved. page 6

Reference material

• The manual Getting Started with Xpress intro-
duces first time or occasional users to modeling
with Mosel and BCL, or the direct Optimizer in-
terface

• The Evaluators Guide and Advanced Evalua-
tors Guide provide a quick walk-through of the
Getting Started examples and some more ad-
vanced features

Introduction, Xpress overview c©2010 Fair Isaac Corporation. All rights reserved. page 7

Modeling with Mosel

• Modeling basics
• Accessing data sources
• Advanced modeling topics
• Programming language features
• Mosel modules and packages

2.1 Modeling basics
Notes

Topics

• Definition of decision variables and constraints
• Solving with Xpress-Optimizer
• Solution output

2.1.1 A first model

Example: Chess problem

• A joinery makes two different sizes of box-
wood chess sets.

• The small set requires 3 hours of machining
on a lathe, and the large set requires 2 hours.
There are 4 lathes with skilled operators who
each work a 40 hour week.

• The small chess set requires 1 kg of boxwood,
and the large set requires 3 kg. Only 200 kg of
boxwood can be obtained per week.

• Each of the large chess sets yields a profit of
$20, and one of the small chess sets has a profit
of $5.

• How many sets of each kind should be made
each week so as to maximize profit?

Chess problem: Mathematical formulation

• xl – quantity of large chess sets made
xs – quantity of small chess sets made

max z = 5 · xs + 20 · xl

s.t. 3 · xs + 2 · xl ≤ 160(= 4 · 40) (lathe time)

xs + 3 · xl ≤ 200 (wood)

xs, xl ≥ 0

Xpress Training c©2010 Fair Isaac Corporation. All rights reserved. page 8

Chess problem: Graphical solution

200 240

40

80

120

40 80 120 160 280 xs

xl

z=800
z=1200

z=1600

z=2000

z=400

optimal solution

time wood

Chess problem: Model Chess 1

model "Chess 1"
uses "mmxprs" ! Use Xpress-Optimizer for solving

declarations
xs: mpvar ! Number of small chess sets
xl: mpvar ! Number of large chess sets

end-declarations

3*xs + 2*xl <= 160 ! Constraint: limit on working hours
xs + 3*xl <= 200 ! Constraint: raw mat. availability

maximize(5*xs + 20*xl) ! Objective: maximize total profit

end-model

Starting and ending a Mosel model

model "Chess 1"
...

end-model

Preamble

• uses statement: Say we will use the Xpress-
Optimizer library, so that we can solve our
problem

• Options:

– noimplicit: force all objects to be de-
clared

– explterm: Use ’;’ to mark line ends

uses ’mmxprs’
options noimplicit
options explterm

Decision variables

declarations
x: mpvar
a, b, c: mpvar
make: array(1..10, 1..20) of mpvar
buy, sell: array(1..10) of mpvar

end-declarations

• mpvar means mathematical programming
variable or decision variable

• Decision variables are unknowns: they have no
value until the model is run, and the optimizer
finds values for the decision variables

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 9

• In optimization problems, decision variables
are often just called variables

• In computer programs, a variable can be used
to refer to many different types of objects

• For instance, in Mosel models, a program vari-
able can be used to refer to a decision variable,
as well as integers, reals, etc.

Bounds on decision variables

• Variables can take values between 0 and infin-
ity by default

• Other bounds may be specified

x <= 10
y(1) = 25.5
y(2) is_free
z(2,3) >= -50
z(2,3) <= 50

Constraints

• Have type linctr – linear constraint

declarations
Wood: linctr
Inven: array(1..10) of linctr

end-declarations

• The ‘value’ of a constraint entity is a linear
expression of decision variables, a constraint
type, and a constant term

• Set using an assignment statement

Wood := xs + 3*xl <= 200

Constraints

Ctr(1) := 2*x(1) + 5*x(2) <= 60
Ctr(2) := x(1) - x(2) = 0
Ctr(3) := 4*x(1) - 3*x(2) >= 10

Inven(2) := stock(2) = stock(1) +
buy(2) - sell(2)

Objective function

• An objective function is just a constraint with
no constraint type

declarations
MinCost: linctr

end-declarations

MinCost := 10*x(1) + 20*x(2) + 30*x(3) + 40*x(4)

Optimization & matrix generation

• Generate the matrix and solve the problem:

minimize(MinCost)
maximize(5*xs + 20*xl)

• Load the matrix:

loadprob(MinCost)

• Matrix export:

exportprob(0, "explout", MinCost)

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 10

Viewing the solution

• Can access and manipulate the solution values
within the model

writeln(’Solution: ’, getobjval)

writeln(’xs = ’, getsol(xs))
writeln(’xl = ’, getsol(xl))

write(’Wood: ’, getact(Wood), ’ ’)
writeln(getslack(Wood))

• Solution values of constraints
activity value + slack value = RHS

Project work [C-1]: Chess problem

• Execute the model chess1.mos.
• Add printing of the solution values.
• Is the solution realistic/desirable?
• Constrain the variables to take integer values

only.
• Add output of constraint activity and slack val-

ues.

• Executing model chess1.mos with IVE:

– double click on the model file to start IVE
or open the file from within IVE

– click on the run button:

• Model execution from the command line:

mosel -c "exe chess1.mos"

– or:

mosel
exe chess1.mos
quit

Solution analysis

• What happens if machines operate 35 instead
of 40 hours?

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400 z=800

z=2000

z=1600

z=1200

optimal solution

time wood

• Calculate spare capacity: getslack,
getactivity

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 11

LP solution analysis

• What is the cost of an extra unit of wood/extra
working hour?

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400
z=1200

z=1600

z=2000

woodtime

optimal solution

z=800

• Reduced cost: getrcost

• What is the cost of producing an additional
unit of each product?

200 240

40

80

120

40 80 120 160 280

wood

xs

xl

z=400 z=800 z=1200 z=1600

z=2000

optimal solutions

time

• Dual values (’shadow prices’): getdual
• Increase price of xl to reach break even point

Solution analysis

• Limit the amount of xl.

200 240

40

80

120

40 80 120 160 280 xs

xl

z=400 z=800
z=1200

z=1600

z=2000

xl=50

woodtime

optimal solution

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 12

2.1.2 Data structures and loops

Extending the example: Model Chess 2
uses "mmxprs"
options explterm ! Use ’;’ to mark line ends

declarations
Allvars: set of mpvar; ! Set of variables
DescrV: array(Allvars) of string; ! Descriptions of variables
xs,xl: mpvar;

end-declarations

DescrV(xs):= "Small"; DescrV(xl):= "Large";

Profit:= 5*xs + 20*xl; ! Objective function
Time:= 3*xs + 2*xl <= 160; ! Constraints
Wood:= xs + 3*xl <= 200;
xs is_integer; xl is_integer;

maximize(Profit);
writeln("Solution: ", getobjval);
forall(x in Allvars) writeln(DescrV(x), ": ", getsol(x));

Data structures

• Set: unordered collection of objects of the
same type

– used as index sets
– special type range sets (= interval of inte-

gers)

• Array: multidimensional table of objects of the
same type

– used for data, decision variables, con-
straints

– may be dynamic or static

Arrays and loops: Model Chess 3
uses "mmxprs"

declarations
R = 1..2 ! Index range
DUR, WOOD, PROFIT: array(R) of real ! Coefficients
x: array(R) of mpvar ! Array of variables

end-declarations

DUR :: [3, 2] ! Initialize data arrays
WOOD :: [1, 3]
PROFIT :: [5, 20]

sum(i in R) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in R) WOOD(i)*x(i) <= 200
forall(i in R) x(i) is_integer
maximize(sum(i in R) PROFIT(i)*x(i))
writeln("Solution: ", getobjval)

Data declaration

declarations
NWEEKS = 20 ! Integer constant
DATA_DIR = ’c:/data’ ! String constant
NPROD: integer ! Integer variable
SCOST: real ! Real variable
DIR: string ! String variable
IF_DEBUG: boolean ! Boolean variable

PRODUCTS = {"P1", "P2", "P4"} ! Constant set of string
S: set of integer ! Variable set of integer
R: range ! Range of integers
COST: array(1..3,1..4) of real ! Array of real

end-declarations

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 13

Data initialization

NPROD:= 50
SCOST:= 5.4
DIR:= ’c:/data’
IF_DEBUG:= true

S:= {10, 0, -5, 13}
R:= 1..NPROD
COST:: [11, 12, 13, 14,

21, 22, 23, 24,
31, 32, 33, 34]

Summations

• Sum up an array of variables in a constraint

Ctr1:= sum(p in 1..10) (RES(p)*buy(p) + sell(p)) <= 100

Ctr2:= sum(p in PRODUCTS) (buy(p) + sum(r in 1..5) make(p,r)) <= 100

Ctr3:= sum(p in 1..NP) (2*CAP(p)*buy(p)/10 +
SCAP(p)*sell(p)) <= MAXCAP

Loops

• Use a loop to assign an array of constraints

forall(t in 2..NT)
Inven(t):= bal(t) = bal(t-1) + buy(t) - sell(t)

• Use do/end-do to group several statements
into one loop

forall(t in 1..NT) do
MaxRef(t):= sum(i in PRODUCTS)
use(i,t) <= MAXREF(t)

Inven(t):= store(t) = store(t-1) + buy(t) - use(t)
end-do

• Can nest forall statements

forall(t in 1..NT) do
MaxRef(t):= sum(i in 1..NI) use(i,t) <= MAXREF(t)

forall(i in 1..NI)
Inven(i,t):= store(i,t) = store(i,t-1) + buy(i,t) - use(i,t)

end-do

Conditions

• May include conditions in sums or loops

forall(c in 1..10 | CAP(c)>=100.0)
MaxCap(c):=
sum(i in 1..10, j in 1..10 | i<>j)
TECH(i,j,c)*x(i,j,c) <= MAXTECH(c)

Mosel statements

• Can extend over several lines and use spaces
• However, a line break acts as an expression ter-

minator
• To continue an expression, it must be cut after

a symbol that implies continuation (e.g. + - ,)

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 14

2.1.3 Model building style
• You should aim to build a model with sections

in this order

– constant data: declare, initialize
– all non-constant objects: declare
– variable data: initialize / input / calculate
– decision variables: create, specify bounds
– constraints: declare, specify
– objective: declare, specify, optimize

• In both LP and MIP it is very important to dis-
tinguish between

– known values

∗ data, parameters, etc.

– and unknown values

∗ decision variables

• All constraints must be linear expressions of
the variables

• Suggestion: name objects as follows

– known values (data) using upper case
– unknown values (variables) using lower

case
– constraints using mixed case

so that it is easy to distinguish between them,
and see that constraints are indeed linear

• Variables are actions that your model will pre-
scribe

• Use verbs for the names of variables

– this emphasizes that variables represent
‘what to do’ decisions

• Indices are the objects that the actions are per-
formed on

• Use nouns for the names of indices

• Using named index sets/ranges

– improves the readability of a model
– makes it easier to apply the model to dif-

ferent sized data sets
– makes the model easier to maintain
– may speed up your model

• Try to include ‘Min’ or ‘Max’ in the name of
your objective function

• An objective function called ‘Obj’ is not very
helpful when taken out of context!

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 15

• Comments are essential for a well written
model

• Always use a comment to explain what each
parameter, data table, variable, and constraint
is for when you declare it

• Add extra comments to explain any complex
calculation etc.

• Comments in Mosel:

declarations
PRODUCTS = 1..NP ! Set of products
TIMES = 1..NT ! Set of time periods
make: array(PRODUCTS, TIMES) of mpvar

! Amount of p produced in time t
sell: array(PRODUCTS, TIMES) of mpvar

! Amount of p sold in time t
end-declarations

(! And here is a multi-line
comment !) forall(t in TIMES)

2.2 Accessing data sources
Notes

Topics

• Text files
• ODBC
• Sparse data

Separation of problem logic and data

• Typically, the model logic stays constant once
developed, with the data changing each run

• Editing the model can create errors, expose in-
tellectual property, and is impractical for in-
dustrial size data

• It makes good sense to fix the model and ob-
tain data from their source

2.2.1 The initializations block

Data input from file: Chess 4
uses "mmxprs"

declarations
PRODS = 1..2 ! Index range
DUR, WOOD, PROFIT: array(PRODS) of real ! Coefficients
x: array(PRODS) of mpvar ! Array of variables

end-declarations

initializations from "chess.dat" ! Read data from file
DUR WOOD PROFIT ! chess.dat: PROFIT: [5 20]

end-initializations ! DUR: [3 2]
! WOOD: [1 3]

sum(i in PRODS) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in PRODS) WOOD(i)*x(i) <= 200
forall(i in PRODS) x(i) is_integer
maximize(sum(i in PRODS) PROFIT(i)*x(i))
writeln("Solution: ", getobjval)

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 16

Data file chess.dat

• Every data item/table has a label, its identifier
• Single line comments (marked with ’!’)

! Data file for ’chess4.mos’

DUR: [3 2]
WOOD: [1 3]
PROFIT: [5 20]

Sparse data format

• Every data entry specified with its index tuple
• Can read data from one labeled data source

into several Mosel data tables at once

– data tables must have identical indices

initializations from ’chess.dat’
[DUR, WOOD, PROFIT] as ’ChessData’

end-initializations

• Format of data file with several data values in
one labeled data range (use a * for a missing
data value)

! chess.dat

ChessData: [
(1) [3 1 5]
(2) [2 3 20]

]

Writing data out to text files

• You can write out values in an analogous way
to reading them in using initializations
to

• To write out the solution values of variables,
or other solution values (slack, activity, dual,
reduced cost) you must first put the values into
a data table

declarations
x_sol: array(PRODS) of real

end-declarations

forall(i in PRODS)
x_sol(i) := getsol(x(i))

initializations to ’result.dat’
x_sol

end-initializations

Free format text files

fopen("result.dat", F_OUTPUT+F_APPEND)

forall(i in PRODS)
writeln(i, ": ", getsol(x(i))

fclose(F_OUTPUT)

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 17

Project work [C-2]: Arrays and index sets

• Modify the model chess4.mos to use indices
of type string.

• Execute this new model chess4s.mos with
data set chess2.dat.

• Output the solution values to file sol.dat us-
ing initializations to.

• Modify the models further to read the con-
tents of the index set from file (chess5.mos,
chess5s.mos).

2.2.2 Dynamic arrays
• Mosel provides a user friendly and efficient

means of modeling mathematical program-
ming problems

• Objects such as dynamic arrays and variable
index sets, together with efficient loops and
sums, allow large scale models to be written
easily, and execute quickly

• Dynamic array: indexing sets not known
at declaration, or array explicitly marked
dynamic

• Initialize dynamic data arrays from text files or
using ODBC

– data must use sparse format
– this is so Mosel can work out the values of

the indices
– reading in the data array initializes both

the index values and the data values at
the same time

Dynamic arrays of decision variables

• An entry of a dynamic array is only created
when a value is assigned to it

• Decision variables don’t get created, because
you don’t assign values to them

• To create decision variables in a dynamic array,
use the create procedure

declarations
TIME: range ! = set of contiguous integers
COST: array(TIME) of real
use: array(TIME) of mpvar

end-declarations

(...) ! Read in COST data etc

forall(t in TIME | exists(COST(t)))
create(use(t))

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 18

• Note: if you declare decision variables after
reading in the data, then decision variables
will be created for all combinations of the in-
dex set elements that exist at that time

• Do not use create in this case
• Define decision variables before reading in

data if you want to use create to control ex-
actly which elements get created

Dynamic arrays

• Use dynamic arrays

– to size data tables automatically when the
data is read in

– to initialize the index values automatically
when the data is read in

– to conserve memory when storing sparse
data

– to eliminate index combinations without
using conditions each time

• Don’t use dynamic arrays

– when you can use an ordinary (static) ar-
ray instead

– when storing dense data, and you can size
the data table and initialize the indices in
some other way
(dynamic arrays are slower and use more
memory than a static array when storing
dense data)

2.2.3 Run-time parameters

Data input from file: Chess 4 completed
uses "mmxprs"
parameters
FILENAME="chess.dat" ! Name of the data file

end-parameters

declarations
PRODS = 1..2 ! Index range
DUR, WOOD, PROFIT: array(PRODS) of real ! Coefficients
x: array(PRODS) of mpvar ! Array of variables

end-declarations

initializations from FILENAME ! Read data from file
DUR WOOD PROFIT

end-initializations

sum(i in PRODS) DUR(i)*x(i) <= 160 ! Constraint definition
sum(i in PRODS) WOOD(i)*x(i) <= 200
forall(i in PRODS) x(i) is_integer
maximize(sum(i in PRODS) PROFIT(i)*x(i))

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 19

Run-time parameters

• Parameters

– a special type of constant
– default value may be overriden at run-

time

parameters
DATA_DIR = ’c:/data’
DEBUG = true
NUM_RECORDS = 1000

end-parameters

• The value in the model is used by default
• A different value may be given at run-time

– In IVE, an alternative value may be set in
the Build � Options dialogue

– When running a Mosel model from an ap-
plication, an alternative value can be set
in the parameters string

• A parameters section must come at the top
of the model

– after any uses or options statements
– before any other statements

• Parameters are especially useful for passing di-
rectories/paths into the model

– all files referenced in the model should
use a directory parameter

– otherwise, Mosel may not be able to find
the file when the model is deployed (the
default path differs when run from an ap-
plication)

– use ’+’ to join strings

• Specifying directory paths

– preferably use ’/’ as directory separator

parameters
DIR = ’.’

end-parameters

fopen(DIR+’/cap.dat’, F_INPUT)
...
fclose(F_INPUT)
...
initializations from DIR+’/cost.dat’
...

Project work [C-3]: Run-time parameters

• In models chess5.mos and chess5s.mos
turn the data file name into a run-time param-
eter.

• Re-run your model chess5s.mos with the
larger data set chess3.dat without changing
the filename in the model.

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 20

• Setting runtime parameters within IVE:

– select menu Build � Options or click on
the button

– check Use model parameters to activate
the parameter input field and enter the
new value(s)

• Runtime parameters from the command line:

mosel -c "exe chess5s.mos DATAFILE=’chess3.dat’"

– or:

mosel
exe chess5s.mos DATAFILE=’chess3.dat’
quit

2.2.4 Using other data sources
• The initializations block can work with

many different data sources and formats
thanks to the notion of I/O drivers

• I/O drivers for physical data files:
mmodbc.excel, mmoci.oci, mmetc.diskdata

• Other drivers available, e.g. for data exchange
in memory

• Change of the data source = change of the I/O
driver, no other modifications to your model

Data transfer using ODBC

• First, must check ODBC driver for your chosen
data source (external to Xpress)

– Start � Settings � Control Panel � Ad-
ministrative Tools � Data Sources (ODBC)

– Check that data source is defined, and
note its name (the data source name,
DSN)

• Next, identify specific data source – a database
or spreadsheet

– note its location (path)
– the data must be in a table in a database,

or a named range in a spreadsheet

• Now, in your model

– use the mmodbc module (requires licence)
– use the odbc driver in initializations

blocks, or
– write out the corresponding SQL com-

mands:
∗ set up an ODBC data connection to

the specific data source
∗ input data using SQL statements
∗ disconnect

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 21

Reading data via ODBC

• Excel spreadsheet (’ChessData’ = range in the
spreadsheet):

initializations from ’mmodbc.odbc:chess.xls’
[DUR, WOOD, PROFIT] as ’ChessData’

end-initializations

• Access database (’ChessData’ = data table):

initializations from ’mmodbc.odbc:debug;chess.mdb’
[DUR, WOOD, PROFIT] as ’ChessData’

end-initializations

Data export to a database

initializations to ’mmodbc.odbc:debug;chess.mdb’
x_sol as ’ChessSol’

end-initializations

• Before every new run, delete the data from
the previous run in the destination range/table

• Otherwise the new results will either be ap-
pended to the existing ones or, if ’PRODS’ has
been defined as key field in a database, the
insertion will fail

Special notes for data export to Excel

• Make sure the ’Read Only’ option is disabled in
the ODBC data source set-up options

• Define the destination range in the spread-
sheet, with one line of column headings, one
line of dummy data, and no other data

• Excel does not support the full range of
ODBC functionality (commands like ’update’
or ’delete’ will fail)
⇒ preferably use direct connection (excel
driver)

Data exchange with MS Excel

• Software-specific driver excel for MS Excel

– use mmodbc module (requires licence)
– use the excel driver (instead of odbc) in
initializations blocks

– no driver setup required (works with stan-
dard Excel installation)

– simply replace "mmodbc.odbc:" by
"mmodbc.excel:skiph;" in the preced-
ing examples

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 22

Data exchange with Oracle

• Software-specific driver oci for Oracle
databases

– use mmoci module (requires licence)
– setup: Oracle’s Instant Client package

must be installed on the machine running
the Mosel model

– in initializations blocks replace
"mmodbc.odbc:" by "mmoci.oci:" in
the preceding examples

– supports SQL statements (replace the pre-
fix SQL by OCI)

SQL

• The I/O driver odbc generates automatically
the SQL commands required to connect to the
database/spreadsheet

• For advanced uses module mmodbc also de-
fines most standard SQL commands directly for
the Mosel language

Project work [C-4]: ODBC

• Check that the ODBC DSN for Excel is set up on
your computer

• Re-run your model chess5.mos with the Excel
file chess.xls

Summary

• We have seen that it is possible to completely
separate the data and the model

• The model specifies the logic of the problem,
without any reference to its size

• The model can be applied to any data instance,
simply by providing data files

Reference material

• Refer to the Mosel User Guide for a detailed
introduction to working with Mosel.

• The book Applications of optimization with
Xpress-MP provides a large collection of exam-
ples models from different application areas.

• See the whitepaper Using ODBC and other
database interfaces with Mosel for further de-
tail on data handling.

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 23

2.3 Advanced modeling topics
Notes

Topics

• MIP variable types
• Modeling with binary variables

2.3.1 MIP variable types
• Binary variables

– can take either the value 0 or the value 1
(do/ don’t do variables)

– model logical conditions

x(4) is_binary

• Integer variables

– can take only integer values
– used where the underlying decision vari-

able really has to take on a whole number
value for the optimal solution to make
sense

x(7) is_integer

• Partial integer variables

– can take integer values up to a specified
limit and any value above that limit

– computational advantages in problems
where it is acceptable to round the LP so-
lution to an integer if the optimal value
of a decision variable is quite large, but
unacceptable if it is small

x(1) is_partint 5 ! Integer up to 5, then continuous

• Semi-continuous variables

– can take either the value 0, or a value be-
tween some lower limit and upper limit

– help model situations where if a variable
is to be used at all, it has to be used at
some minimum level

x(2) is_semcont 6 ! A ’hole’ between 0 and 6, then continuous

• Semi-continuous integer variables

– can take either the value 0, or an integer
value between some lower limit and up-
per limit

– help model situations where if a variable
is to be used at all, it has to be used at
some minimum level, and has to be inte-
ger

x(3) is_semint 7 ! A ’hole’ between 0 and 7, then integer

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 24

• Special Ordered Sets of type one (SOS1)

– an ordered set of variables at most one of
which can take a non-zero value

– single choice among several possibilities

• Special Ordered Sets of type two (SOS2)

– an ordered set of variables, of which at
most two can be non-zero, and if two
are non-zero these must be consecutive in
their ordering

– e.g. approximation of non-linear func-
tions with a piecewise linear function

SOS definition

• WEIGHT array determines the ordering of the
variables:

MYSOS:= sum(i in IRng) WEIGHT(i)*x(i) is_sosX

where is_sosX is either is_sos1 or is_sos2

• Alternative: set S of set members, linear con-
straint L with ordering coefficients (= refer-
ence row entries):

makesos1(S,L); makesos2(S,L)

– must be used if the coefficient
WEIGHT(i) of an intended set mem-
ber is zero

• Note: the ordering coefficients must all be dis-
tinct (or else they are not doing their job of
supplying an order!)

2.3.2 Modeling with binary variables

Logical conditions

• Projects A, B, C, D
• Binary variables a, b, c, d

– do at most 3 projects: a + b + c + d ≤ 3
– must do D if A done: d ≥ a
– can only do C if both A and B done:

c ≤ (a + b) / 2
c ≤ a, c ≤ b

Disjunctions

• Either
5 ≤ x ≤ 10

or
80 ≤ x ≤ 100

• Introduce a new variable:
ifupper: 0 if 5 ≤ x ≤ 10; 1 if 80 ≤ x ≤ 100

x ≤ 10 + (100− 10) · ifupper [1]

x ≥ 5 + (80− 5) · ifupper [2]

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 25

• Either 5 ≤
∑

i Aixi ≤ 10
or 80 ≤

∑
i Aixi ≤ 100

∑
i

Aixi ≤ 10 + 90 · ifupper∑
i

Aixi ≥ 5 + 75 · ifupper

Absolute values

• Two variables
x1, x2

with
0 ≤ xi ≤ U [1. i]

want
y = |x1 − x2|

• Introduce binary variables

d1, d2

to mean
d1 : 1 if x1 − x2 is the positive value
d2 : 1 if x2 − x1 is the positive value

• MIP formulation of y = |x1 − x2|
0 ≤ xi ≤ U [1.i]

0 ≤ y − (x1 − x2) ≤ 2 · U · d2 [2]

0 ≤ y − (x2 − x1) ≤ 2 · U · d1 [3]

d1 + d2 = 1 [4]

Project work [C-5]: Logical constraints

• Take a look at the capital budgeting model
in capbgt.mos: the objective is to determine
the most profitable choice among 8 possible
projects, subject to limited resources (person-
nel and capital)

• Formulate the following additional con-
straints:

– P1 can only be done if P2 is done
– P1 can only be done if P3 and P6 are done
– It is not possible to do both P5 and P6
– Either P1 and P2 must be done or P3 and

P4 (but not both pairs).

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 26

2.4 Programming language features
Notes

Mosel: A programming environment

• Selections
• Loops
• Set operations
• Subroutines
• Data structures

2.4.1 Selections
• if

if A >= 20 then
x <= 7

elif A <= 10 then
x >= 35

else
x = 0

end-if

• case

case A of
-1000..10 : x >= 35
20..1000 : x <= 7
12, 15 : x = 1
else x = 0

end-case

2.4.2 Loops
• forall [do]
• while [do]
• repeat until

Example: Prime numbers

• Implements the ‘Sieve of Eratosthenes’.

SNumbers = {2, . . . , L}
n := 2
repeat

while (n 6 ∈SNumbers) n := n + 1
SPrime := SPrime ∪ {n}
i := n
while (i ≤ L)

SNumbers := SNumbers\{i}
i := i + n

until SNumbers = {}

model Prime
parameters
LIMIT=100 ! Search for prime numbers in 2..LIMIT
end-parameters

declarations
SNumbers: set of integer ! Set of numbers to be checked
SPrime: set of integer ! Set of prime numbers

end-declarations

SNumbers:={2..LIMIT}
writeln("Prime numbers between 2 and ", LIMIT, ":")

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 27

n:=2
repeat
while (not(n in SNumbers)) n+=1
SPrime += {n} ! n is a prime number
i:=n
while (i<=LIMIT) do ! Remove n and all its multiples
SNumbers-= {i}
i+=n

end-do
until SNumbers={}

writeln(SPrime)
writeln(" (", getsize(SPrime), " prime numbers.)")

end-model

Operations on sets

• Set operators include

– union: +
– intersection: *
– difference: -

• Logical expressions using sets include

– subset: Set1 <= Set2
– superset: Set1 >= Set2
– equals: Set1 = Set2
– not equals: Set1 <>Set2
– element of: ’Oil5’ in Set1
– not element of: ’Oil5’ not in Set1

2.4.3 Functions and procedures
• Similar structure as model, including the
declarations blocks

• Terminated by end-function or
end-procedure

• Function defines returned with its return
value

• forward declaration
• Overloading possible (each version with a dif-

ferent number or types of arguments)

Example: Quick Sort algorithm

1. Choose a middle value v for partitioning (here:
v = (min + max) / 2)

2. Divide the list into two parts ‘left’ (all elements
x < v) and ‘right’ (all elements x > v)

3. Repeat from 1. for lists ‘left’ and ‘right’

model "Quick Sort"
parameters
LIM=50

end-parameters
! Declare procedures that are defined later

forward procedure qsort(L:array(range) of integer)
forward procedure qsort(L:array(range) of integer, s,e:integer)

declarations
T:array(1..LIM) of integer

end-declarations
! Generate randomly an array of numbers

forall(i in 1..LIM) T(i):=round(.5+random*LIM)
writeln(T)
time:=gettime

qsort(T) ! Sort the array
writeln(T) ! Print the sorted array

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 28

! Swap the positions of two numbers in an array
procedure swap(L:array(range) of integer, i,j:integer)
k:=L(i)
L(i):=L(j)
L(j):=k

end-procedure

! Start of the sorting process
procedure qsort(L:array(r:range) of integer)
qsort(L,getfirst(r),getlast(r))

end-procedure

! Sorting routine
procedure qsort(L:array(range) of integer, s,e:integer)
v:=L((s+e) div 2)
i:=s; j:=e
repeat
while(L(i)<v) i+=1
while(L(j)>v) j-=1
if i<j then
swap(L,i,j)
i+=1; j-=1

end-if
until i>=j
if j<e and s<j then qsort(L,s,j); end-if
if i>s and i<e then qsort(L,i,e); end-if

end-procedure

end-model

2.4.4 Data structures
• array
• set
• list
• record
• ... and any combinations thereof, e.g.,

S: set of list of integer
A: array(range) of set of real

List

• Collection of objects of the same type
• May contain the same element several times
• Order of list elements is specified by construc-

tion
• Handling: cuthead, splittail, reverse...

declarations
L: list of integer
M: array(range) of list of string

end-declarations

L:= [1,2,3,4,5]
M:: (2..4)[[’A’,’B’,’C’], [’D’,’E’], [’F’,’G’,’H’,’I’]]

Record

• Finite collection of objects of any type
• Each component of a record is called a ’field’

and is characterized by its name and its type

declarations
ARC: array(ARCSET:range) of record
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
end-declarations

ARC(1).Source:= "B"
ARC(3).Cost:= 1.5

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 29

User types

• Treated in the same way as the predefined
types of the Mosel language

• New types are defined in declarations
blocks by specifying a type name, followed by
=, and the definition of the type

declarations
myreal = real
myarray = array(1..10) of myreal
COST: myarray

end-declarations

• Typical uses

– shorthand for repetitions in declarations
– naming records

declarations
arc = record
Source,Sink: string ! Source and sink of arc
Cost: real ! Cost coefficient

end-record
A: arc
ARC: array(ARCSET:range) of arc

end-declarations

Summary: Language features

• Data structures: array, set, list, record
• Selections: if-then-[elif-then]-[else], case
• Loops: forall-[do], while-[do], repeat-until
• Operators:

– standard arithmetic operators
– aggregate operators (sum, prod, and, or,

min, max, union, intersection)
– set operators

• Subroutines: functions, procedures
(forward declaration, overloading)

2.4.5 Programming solution algorithms

Mosel: A solving environment

• No separation between ‘modeling statements’
and ‘solving statements’

• Programming facilities for pre/postprocessing,
algorithms

• Principle of incrementality
• Not solver-specific
• Possibility of interaction with solver(s)

Solving: Variable fixing heuristic

• Solution heuristic written with Mosel
• Program split into several source files

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 30

Solving: Variable fixing heuristic (main file)

model Coco
uses "mmxprs"

include "fixbv_pb.mos"
include "fixbv_solve.mos"

solution:=solve
writeln("The objective value is: ", solution)

end-model

Solving: Variable fixing heuristic (model)

declarations
RF=1..2 ! Range of factories (f)
RT=1..4 ! Range of time periods (t)
(...)
openm: array(RF,RT) of mpvar

end-declarations

(...)
forall(f in RF,t in 1..NT-1) Closed(f,t):= openm(f,t+1) <= openm(f,t)
forall(f in RF,t in RT) openm(f,t) is_binary

Solving: Variable fixing heuristic (algorithm)

function solve:real
declarations
osol: array(RF,1..2) of real
bas: basis

end-declarations

setparam("XPRS_PRESOLVE",0)
setparam("zerotol", 5.0E-4) ! Set Mosel comparison tolerance
maximize(XPRS_LPSTOP,MaxProfit) ! Solve the root LP
savebasis(bas) ! Save the basis

forall(f in RF, t in 1..2) do ! Fix some binary variables
osol(f,t):= getsol(openm(f,t))
if osol(f,t) = 0 then
setub(openm(f,t), 0.0)

elif osol(f,t) = 1 then
setlb(openm(f,t), 1.0)

end-if
end-do

maximize(XPRS_CONT,MaxProfit) ! Solve modified problem
solval:=getobjval ! Save solution value

forall(f in RF, t in 1..2) ! Reset variable bounds
if((osol(f,t) = 0) or (osol(f,t) = 1)) then
setlb(openm(f,t), 0.0)
setub(openm(f,t), 1.0)

end-if

loadbasis(bas) ! Load previously saved basis
setparam("XPRS_MIPABSCUTOFF", solval) ! Set cutoff value
maximize(MaxProfit) ! Solve original problem
returned:= if(getprobstat=XPRS_OPT, getobjval, solval)

end-function

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 31

2.5 Mosel modules and packages
Notes

Mosel: A modular environment

• Open architecture:

– possibility to define language extensions
via packages or modules without any
need to modify the core of the Mosel lan-
guage

• Package = library written in the Mosel lan-
guage

– making parts of Mosel models re-usable
– deployment of Mosel code whilst protect-

ing your intellectual property
– similar structure as models (keyword
model is replaced by package), compiled
in the same way

– included with the uses statement
– definition of new types, subroutines, sym-

bols
– see examples in the Mosel User Guide

• Module = dynamic library written in C

– modules of the Mosel distribution:

∗ solver interfaces: Xpress-Optimizer
(LP, MIP, QP), SLP, SP, CP

∗ database access: ODBC, OCI
∗ system commands; model handling;

graphics

– write your own modules for

∗ connecting to external software
∗ time-critical tasks
∗ defining new types, subroutines, op-

erators, I/O drivers, control parame-
ters, symbols

Some highlights of module features

• Interaction with external programs during
their execution (callback functions)

• Access to other solvers and solving paradigms
(NLP, CP)

• Implementation of graphical applications
(mmive, XAD)

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 32

Module mmxprs: Using callback functions
uses "mmxprs"

declarations
x: array(1..10) of mpvar

end-declarations

public procedure printsol
writeln("Solution: ", getsol(Objective))
forall(i in 1..10) write("x(", i, ")=", getsol(x(i)), "�")
writeln

end-procedure

setcallback(XPRS_CB_INTSOL, "printsol")

Module mmxslp: Solving an NLP by SLP

• What is the greatest area of a polygon of N
sides and a diameter of 1?

model "Polygon"
uses "mmxslp"

declarations
N=5
area: gexp
rho, theta: array(1..N) of mpvar
objdef: mpvar
D: array(1..N,1..N) of genctr

end-declarations

forall(i in 1..N-1) do ! Initialization of SLP variables
rho(i) >= 0.1; rho(i) <= 1
SLPDATA("IV", rho(i), 4*i*(N + 1 - i)/((N+1)^2))
SLPDATA("IV", theta(i), M_PI*i/N)

end-do

forall(i in 1..N-2, j in i+1..N-1) ! Third side of all triangles
D(i,j):= rho(i)^2 + rho(j)^2 -

rho(i)*rho(j)*2*cos(theta(j)-theta(i)) <= 1

! Vertices in increasing order
forall(i in 2..N-1) theta(i) >= theta(i-1) +.01

theta(N-1) <= M_PI ! Boundary conditions

area:= ! Objective: sum of areas
(sum(i in 2..N-1) (rho(i)*rho(i-1)*sin(theta(i)-theta(i-1))))*0.5

objdef = area; objdef is_free
SLPloadprob(objdef)
SLPmaximize

writeln("Area = ", getobjval)
end-model

Module kalis: Constraint Programming

• Example: jobshop scheduling

– schedule the production of a set of jobs
on a set of machines. Every job is pro-
duced by a sequence of tasks, each of
these tasks is processed on a different ma-
chine. A machine processes at most one
job at a time.

• Implementation with high-level modeling ob-
jects (tasks and resources)

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 33

model "Job Shop"
uses "kalis"

declarations
JOBS = 1..NJ ! Set of jobs
MACH = 1..NM ! Set of resources
RES: array(JOBS,MACH) of integer ! Resource use of tasks
DUR: array(JOBS,MACH) of integer ! Durations of tasks

res: array(MACH) of cpresource ! Resources
task: array(JOBS,MACH) of cptask ! Tasks

end-declarations

... ! Initialize the data

HORIZON:= sum(j in JOBS, m in MACH) DUR(j,m)

forall(j in JOBS) getend(task(j,NM)) <= HORIZON

! Setting up the resources (capacity 1)
forall(m in MACH)
set_resource_attributes(res(m), KALIS_UNARY_RESOURCE, 1)

! Setting up the tasks (durations, resource used)
forall(j in JOBS, m in MACH)
set_task_attributes(task(j,m), DUR(j,m), res(RES(j,m)))

! Precedence constraints between the tasks of every job
forall (j in JOBS, m in 1..NM-1)
setsuccessors(task(j,m), {task(j,m+1)})

! Solve the problem & print solution
if cp_schedule(getmakespan)<>0 then
writeln("Total completion time: ", getsol(getmakespan))

end-if
end-model

Module mmive: Drawing user graphs

model "Schedule"
uses "mmive", "mmsystem"

declarations
MACHINES=6; JOBS=6
graphs, colors: array(1..MACHINES) of integer
labels: array(1..JOBS) of integer
curmachine, curjobs, n1, n2, n3: integer

end-declarations

colors:: [IVE_WHITE, IVE_YELLOW, IVE_CYAN, IVE_RED, IVE_GREEN,
IVE_MAGENTA]

fopen("schedule.dat", F_INPUT)

forall (i in 1..MACHINES) do
graphs(i):= IVEaddplot("Machine "+i, IVE_BLUE)
labels(i):= IVEaddplot("Jobs for machine "+i, Color(i))

end-do

forall (i in 1..MACHINES) do
readln(n1, n2) ! Read machine no. & no. of jobs
writeln("Machine ", n1, " Jobs:", n2)
curmachine:= n; curjobs:= n2
forall(j in 1..curjobs) do
readln(n1, n2, n3) ! Read job no., start & finish times
writeln("On machine ", curmachine, " job ", n1,

" starts at ", n2, " and finishes at ", n3)
IVEdrawarrow(graphs(curmachine), n2, curmachine, n3, curmachine)
IVEdrawlabel(labels(n1), (n2+n3)/2, curmachine,

"Job "+n1+"\r starts: "+n2+"\r ends: "+n3)
end-do

end-do

IVEzoom(0, 0, 30, 7)
fclose(F_INPUT)

end-model

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 34

And also

• Working with several models in parallel, pos-
sibly in a heterogeneous distributed architec-
ture (module mmjobs)

– see whitepaper Multiple models and par-
allel solving with Mosel

• Combining different solvers

– see whitepaper Hybrid MIP/CP solving
with Xpress-Optimizer and Xpress-Kalis

Reference material

• The modules of the Mosel distribution are
documented in the Mosel Language Refer-
ence Manual (with separate manuals for solver
modules mmxslp and kalis)

• The Mosel Native Interface User Guide explains
how to write your own modules.

Modeling with Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 35

Embedding Mosel models

3.1 Embedding models in applications
Notes

What is the Mosel API?

• The Mosel language allows you to formulate
optimization problems, and develop optimiza-
tion methods (i.e., use the Optimizer to solve
them), as a Mosel model

• The Mosel API (also Mosel libraries) allows you
to embed Mosel models in an application

Programming environments

• The Mosel API is available for C/C++, Java, .NET
and VB

• We use Java in the slides, but the functionality
applies to all languages, and similar applica-
tions can be developed in other languages

Mosel libraries

• Model Compiler Library

– compiles to a virtual machine
– binary format architecture independent

• Runtime Library

– load and run binary (models)
– access to Mosel internal database (data,

solution values, ...)

Generating a deployment template

• With Xpress-IVE: select Deploy � Deploy or
click the deploy button

• Choose the application language:

Xpress Training c©2010 Fair Isaac Corporation. All rights reserved. page 36

• Clicking on the Next button will open a new
window with the resulting code

• Use the Save as button to set the name and
location of the new file.

Mosel library functions

• General:

XPRM(), XPRM.getVersion, XPRM.license, ...

• Model handling:

XPRM.compile, XPRM.loadModel, XPRMModel.run, XPRMmodel.getResult,
XPRMModel.getExecStatus, XPRMModel.reset, ...

• Solution information:

XPRMModel.getObjectiveValue, XPRMModel.getProblemStatus,
XPRMMPVar.getSolution, XPRMLinCtr.getActivity, ...

• Accessing model objects:

XPRMModel.findIdentifier

• Arrays:

XPRMArray.getDimension, XPRMArray.getIndexSets,
XPRMArray.getFirstIndex, XPRMArray.nextIndex, XPRMArray.get, ...

• Sets:

XPRMSet.getSize, XPRMSet.getFirstIndex, XPRMSet.isFixed, ...

• Handling of modules:

XPRM.findModule, XPRM.setModulesPath, XPRMModule.parameters, ...

Project work [C-6]: Model deployment

• Use IVE to generate a Java program that com-
piles and runs model chess5.mos

• Modify the program so that the model execu-
tion uses the data file chess4.dat.

• Check the problem status and output the ob-
jective value.

Extending the example

• Retrieving detailed solution information and
model data

XPRMModel model;
XPRMSet prods;
XPRMArray profit, ax;
XPRMMPVar x;
int[] idx = new int[1];
double val;

// Retrieve solution values and problem data
prods = (XPRMSet)model.findIdentifier("PRODS");
profit = (XPRMArray)model.findIdentifier("PROFIT");
ax = (XPRMArray)model.findIdentifier("x");

// Get the first entry of array ’ax’
// (we know that the array is dense and has a single dimension)
idx = ax.getFirstIndex();
do
{
x = ax.get(idx).asMPVar(); // Get a variable from ’ax’
val = profit.getAsReal(idx); // Get the corresponding value
System.out.println(prods.get(idx[0]) + ": " + x.getSolution() +

"\t (profit: " + val + ")");
// Print the solution value

} while(ax.nextIndex(idx)); // Get the next index

Embedding Mosel models c©2010 Fair Isaac Corporation. All rights reserved. page 37

• Data exchange in memory with host applica-
tion

public class chessio
{
static int NP = 4; // Input data
static final double[] dur = {3, 2, 2, 3};
static final double[] wood = {1, 2, 3, 6};
static final double[] profit = {5,12,20,40};

// Array for solution values
static double[] solution = new double[NP];

public static void main(String[] args) throws Exception
{
int result;
XPRMModel model;
XPRM xprm;

xprm = new XPRM(); // Initialize Mosel
xprm.compile("chess5ioj.mos"); // Compile + load model
model = xprm.loadModel("chess5ioj.bim");
xprm.bind("DUR", dur); // Associate Java objects with
xprm.bind("WOOD", wood); // names in Mosel
xprm.bind("PROFIT", profit);
xprm.bind("xsol", solution);
model.execParams = "NP="+NP; // Set runtime parameters
model.run(); // Run the model
if (model.getProblemStatus()==model.PB_OPTIMAL)
{ // Check problem status and display the solution
System.out.println("Objective: " + model.getObjectiveValue());
for(int i=0;i<NP;i++)
System.out.println("x(" + (i+1) + "): " + solution[i] +

"\t (profit: " + profit[i] + ")");
}
model.reset();

}
}

Summary

• Mosel libraries allow you to embed model pro-
grams directly in your application

• Access the solution directly in your application,
as alternative to using ODBC

• Enjoy benefits of structured modeling lan-
guage and rapid deployment when building
applications

• May choose to work with compiled models
rather than model source files – provides pro-
tection against the user viewing / changing the
model

• Compiled models are platform independent

Reference material

• You will find it helpful to refer to the Mosel
Libraries Reference Manual

• The part ’Working with the Mosel libraries’ of
the Mosel User Guide documents examples for
different programming language interfaces

Embedding Mosel models c©2010 Fair Isaac Corporation. All rights reserved. page 38

Summary and further information

4.1 Summary
Notes

• Have seen:

– FICO Xpress product suite
∗ solvers
∗ modeling interfaces
∗ development environment

• Have seen:

– Modeling with Mosel

∗ formulating Linear and Mixed Integer
Programming (LP and MIP) problems

∗ accessing data sources
∗ programming language features
∗ language extensions (modules and

packages)

– Embedding models in applications for de-
ployment

Further information

• Xpress website:
http://www.fico.com/xpress

• Examples database:
http://examples.xpress.fico.com

• Whitepapers, documentation:
http://optimization.fico.com

Xpress Training c©2010 Fair Isaac Corporation. All rights reserved. page 39

http://www.fico.com/xpress
http://examples.xpress.fico.com/example.pl
http://optimization.fico.com/product-information/

	Introduction, Xpress overview
	Overview of Xpress
	Why use modeling software?
	Xpress-IVE demonstration

	Modeling with Mosel
	Modeling basics
	A first model
	Data structures and loops
	Model building style

	Accessing data sources
	The initializations block
	Dynamic arrays
	Run-time parameters
	Using other data sources

	Advanced modeling topics
	MIP variable types
	Modeling with binary variables

	Programming language features
	Selections
	Loops
	Functions and procedures
	Data structures
	Programming solution algorithms

	Mosel modules

	Embedding Mosel models
	Embedding models in applications

	Summary and further information
	Summary

